NASA SBIR 2008 Phase I Solicitation

Space Operations

Space Communications Topic O1

NASA's communications capability is based on the premise that communications shall enable and not constrain missions. Communications must be robust to support the numerous missions for space science, Earth science and exploration of the universe. Technologies such as optical communications, RF including antennas and ground based Earth stations, surface networks, access links, reprogrammable communications systems, communications systems for EVAs, advanced antenna technology, transmit array concepts and communications in support of launch services including space based assets are very important to the future of exploration and science activities of the Agency. Emphasis is placed on size, weight and power improvements. Even greater emphasis is placed on these attributes as small satellites (e.g., micro and nano satellite) technology matures. Innovative solutions centered around operational issues associated with the communications capability are needed. Communications that enable the range safety data from sensitive instruments is imperative. These technologies are to be aligned with the Space Communications and Navigation Architecture as being developed by the Agency. See https://www.spacecomm.nasa.gov/spacecomm/ for more details. A typical approach for flight hardware would include: Phase 1 - Research to identify and evaluate candidate telecommunications technology applications to demonstrate the technical feasibility and show a path towards a hardware/software demonstration. Bench or lab-level demonstrations are required. Phase 2 - Emphasis should be placed on developing and demonstrating the technology under simulated flight conditions. The proposal shall outline a path showing how the technology could be developed into space-worthy systems. The contract should deliver a demonstration unit for functional and environmental testing at the completion of the Phase 2 contract. Some of the subtopics in this topic could result in products that may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 for more details as to the requirements for flight opportunities.

Sub Topics:

O1.01 Coding, Modulation, and Compression

Lead Center: JPL

Participating Center(s): ARC, GRC, GSFC

This subtopic aims to develop components in digital communication systems that offer both spectrum and power efficient solutions to NASA's future near-Earth, deep-space science and exploration applications. This area comprises technology in three key areas: forward error-correction (FEC) coding, data compression, and modulation. The state-of-the-art in flight for coding is (1) Reed-Solomon code concatenated with a convolutional codes, (2) turbo codes, and just emerging, (3) Low Density Parity Check (LDPC) codes. The first two have flown many times, and the initial designs for (3) are just being begun now. The state-of-the-art in compression is the CCSDS standard http://public.ccsds.org/publications/archive/122x0b1c1_e1.pdf. The state-of-the-art for modulation is BPSK and QPSK for deep space, and BPSK, QPSK, SQPSK, and 8-PSK for near Earth (TDRS) applications. Technology development is needed and required in the following areas:

Coding

The need is to handle signal degradation due to weather impact in Ka-band, RFI interference, and multi-path fading in NASA's future missions. A major challenge is developing coding schemes to handle long bursts of errors, up to 100,000 symbols long, at high processing rate. FEC coding technology to protect against long bursts of erasures due to radio frequency interference (RFI), weather conditions, fading, etc. An entirely new protection mechanism is needed for this long-outage scenario -- existing FEC codes of up to 16,000 are insufficient for this purpose. This technology would be needed in time for a first Ka-band-only mission in the 2015 time-frame. The target is a finished product at TRL 5.
Data Compression

The need is for a real-time high-speed hardware decoder for CCSDS 122.0-B-1 (http://public.ccsds.org/publications/archive/122x0b1c1_e1.pdf) (A CCSDS 122.0-B-1 compliant encoder is already inserted into NASA’s mission.) This hardware development effort would be a reference implementation of this standard, that could be used either as the basis for a flight unit, or as an independent validation test module for a flight unit or engineering model. The target is a finished product at TRL 6.

Modulation

Bandwidth efficiency is becoming increasingly important; missions desire simultaneous telemetry and ranging. Modulations and multiple access schemes for multiple spacecraft downlinking to a single antenna; expansion of SNIP code library – find more good PN spreading codes compatible with SNIP library; bandwidth efficient ranging – how to combine ranging with higher order modulations. Technology target is a demonstration at TRL 5.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a Phase 2 hardware and software demonstration and deliver a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

O1.02 Antenna Technology

Lead Center: GRC
Participating Center(s): ARC, GSFC, JPL, JSC, LaRC

NASA seeks advanced antenna systems in the following areas: phased array antennas; ground-based uplink antenna array designs; high-efficiency, miniature antennas; smart, reconfigurable antennas; large aperture inflatable/deployable antennas; and antenna adaptive beam correction with pointing control.

Phased Array Antennas

Low cost phased array antennas are needed to enable communication capabilities in the following areas: lunar and planetary exploration, including links between astronauts, landers, habitats, probes, orbiters, suborbital vehicles such as sounding rockets, balloons, unmanned aerial vehicles (UAV's), and expendable launch vehicles (ELV's). The frequencies of interest are S-, X-, Ku-, and Ka-band.

The arrays are required to be aerodynamic or conformal in shape for sounding rockets, UAV's, and expendable platforms. They must also be able to withstand the launch environment. The balloon vehicles communicate primarily with TDRS and can tolerate a wide range of mechanical dimensions. The main challenges to be addressed are low mass, low cost, high power efficiency (i.e., > 40%), and coverage area (i.e., highly steerable). A significant cost reduction for MMIC based arrays is highly desirable. (Typical NRE is ~ $1000.00/element.) Advances in digital beam-forming techniques, including those based on superconducting digital signal processing methods, are also desirable. The expected exit technology readiness level (TRL) is 4.

Ground-based Uplink Antenna Array Designs

NASA is considering arrays of ground-based antennas to increase capacity and system flexibility, to reduce reliance on large antennas and high operating costs, and eliminate single point of failure of large antennas. A large
number of smaller antennas arrayed together results in a scalable, evolvable system which enables a flexible schedule and support for more simultaneous missions. Some concepts currently under consideration are the development of medium-size (12-m class) antennas (hundreds of them are expected to be required) for transmit/receive (Tx/Rx) ground-based arrays. A significant challenge is the implementation of an array for transmitting (uplinking), which may or may not use the same antennas that are used for receiving. The uplink frequency will be in the 7.1-8.6 GHz range (X-band) in the near term, and may be higher frequencies in the future; it will likely carry digital modulation at rates from 10 kbps to 30 Mbps. An EIRP of at least 500 GW is required, and some applications contemplate an EIRP as high as 10 TW. A major challenge in the uplink array design is minimizing the life-cycle cost of an array.

Other challenges for ground-based antennas include the development of low cost, reliable components for critical antenna systems; advanced, ultra-phase-stable electronics, and phase calibration techniques; improved understanding of atmospheric effects on signal coherence; and integrated low-noise receiver-transmitter technology. Phase calibration techniques needed to ensure coherent addition of the signals from individual antennas at the spacecraft are also required. It is important to understand whether space-based techniques are required or ground-based techniques are adequate. In general, a target spacecraft in deep space cannot be used for calibration because of the long round-trip communication delay.

Design of ultra-phase-stable electronics to maintain the relative phase among antennas is also needed. These will minimize the need for continuous, extensive and/or disruptive calibrations. A primary related effort currently underway is understanding the effect of the medium (primarily the Earth's troposphere) on the coherence of the signals at the target spacecraft. Generally, turbulence in the medium tends to disrupt the coherence in a way that is time-dependent and site-dependent. A quantitative understanding of these effects is needed. Consequently, techniques for integrating a very low-noise, cryogenically cooled receiver with a medium power (1-200 W) transmitter, are desired. If transmitters and receivers are combined on the same antenna, the performance of each should be compromised as little as possible, and the low cost and high reliability should be maintained.

Under the ground-based antenna area, the exit TRL should be greater than or equal to 4.

High-Efficiency, Miniature Antennas

High efficiency, low-cost, low-weight, miniaturized antennas that are wearable antennas or can be highly integrated into the structure. Example of EVA's space suits made with textile antennas or visor mounted antennas. The antennas may be fractal antennas but also multi-directional to support astronaut mobility, multiband operation and/or broad bandwidth. Antennas should be low/self-powered, small, and efficient, and compatible with communication equipment that can provide high data rate coverage at short ranges (~1.5-3 km, horizon for the Moon for EVA). In-situ low-gain antenna (UHF or X-band) that provide circular polarization with full hemispherical coverage (zenith as well as over the horizon) are desirable.

Smart, Reconfigurable Antennas

NASA is interested in smart, reconfigurable antennas for applications in lunar and planetary operations. The characteristics to consider include the frequency, polarization, and the radiation pattern. Low-cost approaches are encouraged to reduce the number of antenna apertures needed to meet the requirements associated with lunar and planetary surface exploration (e.g., rovers, pressurized surface vehicles, habitats, etc.). Desirable features include multibeam operation to support connectivity to different communication nodes on lunar and planetary surfaces or in support of communication links for satellite relays around planetary orbits. Also the antenna shall be highly directive, multi-frequency and compatible with Multiple Input Multiple Output (MIMO) concept.

The exit TRL should be 4.

Large Aperture Inflatable/Deployable Antennas

Large deployable or inflatable membrane antennas to significantly reduce stowage volume (packaging efficiencies as high as 50:1), provide high deployment reliability, and significantly reduced mass density (i.e., < 1kg/square meter) are needed. These large Gossamer-like antennas are required to provide high-capacity communication links with low fabrication costs from the Moon/Mars surface to relay satellites or Earth. These membrane antennas are deployed from a small package via some inflation mechanism. Techniques for rigidizing these membrane antennas without the use of gases (e.g., ultraviolet curing), as well as thin-membrane tensioning and support techniques to
achieve precision and wrinkle-free surfaces, in particular for applications at Ka-band or higher frequencies is desirable.

Novel materials (including memory matrix materials), low fabrication costs and deployment and construction methods using low emissivity materials to enable passive microwave instrument application are also beneficial. Structural health monitoring systems, needed to support pre-flight integration / test activities and determine health of system in-flight, are of interest. The challenge is to generate designs incorporating structural considerations (e.g., aero-braking for deep space planetary missions).

Antenna Adaptive Beam Correction with Pointing Control

Antenna adaptive beam correction with pointing control that can provide spacecraft knowledge with fine beam pointing with sub-milliradian precision (e.g., < 250 micro-radians) in order to point large spacecraft antennas (e.g., 10-m diameter) in Mars' vicinity is also desirable under this subtopic. The challenges include reduced antenna reflector surface distortions in a space environment; compensation techniques to optimize antenna beam patterns; ground- and space-based methods to monitor spacecraft antenna distortions; and advanced technologies that enable antenna pointing accuracies in the sub-milliradian range for Ka-band spacecraft applications. Methods of dealing with extreme latency (e.g., 20 minutes) in beacon and monopulse systems are of interest. Advances would lead to enhanced space communication links. The resulting developments should be at TRL 4. Size weight and power requirements are of concern.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Development Timeline: After a possible Phase 3 development activity, these technologies are expected to ready for insertion at TRL 6 by 2014. Therefore a TRL progression from an entry TRL of 1-2 for Phase 1 in January 2009 followed by an exit TRL of 3 - 4 after Phase 2 is reasonable.

Phase 1 Deliverables: A final report containing optimal design for the technology concept including feasibility of concept, a detailed path towards Phase 2 hardware and/or software demonstration. The report shall also provide options for potential Phase 3 funding from other government agencies (OGA).

Phase 2 Deliverables: A working proof-of-concept demonstrated and delivered to NASA for testing and verification.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

O1.03 Reconfigurable/Reprogrammable Communication Systems

Lead Center: GRC

Participating Center(s): ARC, GSFC, JPL, JSC

NASA seeks novel approaches in reconfigurable, reprogrammable communication systems to enable the vision of Space, Exploration, Science, and Aeronautical Systems. Exploration of Martian and Lunar environments will require advancements in communication systems to manage the demands of the harsh space environment on space electronics, maintain flexibility and adaptability to changing needs and requirements, and provide flexibility and survivability due to increased mission durations. NASA missions can have vastly different transceiver requirements (e.g., 1’s to 10’s Mbps at UHF and S-band frequency bands up to 10’s to 1000’s Mbps at X, and Ka-band frequency bands.) and available resources depending on the science objective, operating environment, and spacecraft resources. For example, deep space missions are often power constrained; operating over large
distances, and subsequently have lower data transmission rates when compared to near-Earth or near planetary satellites. These requirements and resource limitations are known prior to launch; therefore, the scalability feature can be used to maximize transceiver efficiency while minimizing resources consumed. Larger platforms such as vehicles or relay spacecraft may provide more resources but may also be expected to perform more complex functions or support multiple and simultaneous communication links to a diverse set of assets.

This solicitation seeks advancements in reconfigurable transceiver and associated component technology. The goal of the subtopic is to provide flexible, reconfigurable communications capability while minimizing on-board resources and cost. Topics of interest include the development of software defined radios or radio subsystems which demonstrate reconfigurability, flexibility, reduced power consumption of digital signal processing systems, increased performance and bandwidth, reduced software qualification cost, and error detection and mitigation technologies. Complex reconfigurable systems will provide multiple channel and multiple and simultaneous waveforms. Areas of interest to develop and/or demonstrate are as follows:

- Advancements in bandwidth capacity, reduced resource consumption, or adherence to the Space Telecommunications Radio System (STRS) standard and open hardware and software interfaces. Techniques should include fault tolerant, reliable software execution, reprogrammable digital signal processing devices.
- Reconfigurable software and firmware which provide access control, authentication, and data integrity checks of the reconfiguration process including partial reconfiguration which allows simultaneous operation and upload of new waveforms or functions.
- Operator or automated reconfiguration or waveform load detection failure and the ability to provide access back to a known, reliable operational state. An automated restore capability ensures the system can revert to a baseline configuration, thereby avoiding permanent communications loss do to an errant reconfiguration process or logic upset.
- Dynamic or distributed on-board processing architectures to provide reconfigurability and processing capacity. For example, demonstrate technologies to enable a common processing system capacity for communications, science, and health monitoring.
- Adaptive modulation and waveform recognition techniques are desired to enable transceivers to exchange waveforms with other assets automatically or through ground control.
- Low overhead, low complexity hardware and software architectures to enable hardware or software component or design reuse (e.g., software portability) that demonstrates cost or time savings. Emphasis should be on the application of open standards architecture to facilitate interoperability among different vendors to minimize the operational impact of upgrading hardware and software components.
- Software tools or tool chain methodologies to enable both design and software modeling and code reuse and advancements in optimized code generation for digital signal processing systems.
- The use of reconfigurable logic devices in software defined radios is expected to increase in the future to provide reconfigurability and on-orbit flexibility for waveforms and applications. As the densities of these devices continue to increase and feature size decreases, the susceptibility of the electronics to single event effects also increases. Novel approaches to mitigate single event effects in reconfigurable logic caused by charged particles are sought to improve reliability. New methods should show advancements in reduced cost, power consumption or complexity compared to traditional approaches (i.e., voting schemes and constant updates (i.e., scrubbing)).
- Techniques and implementations to provide a core capability within the software defined radio in the event of failure or disruption of the primary waveform and/or system hardware. Communication loss should be detected and core capability (e.g., “gold” waveform code) automatically executed to provide access control and restore operation.
- Innovative solutions to software defined radio implementations that reduce power consumption and mass. Solutions should enable future hardware scalability among different mission classes (e.g., low rate deep space to moderate or high rate near planetary, or relay spacecraft) and should promote modularity and common, open interfaces.
- In component technology, advancements in analog-to-digital converters or digital-to-analog converters to increase sampling and resolution capabilities, novel techniques to increase memory densities, and advancements in processing and reconfigurable logic technology each reducing power consumption and improving performance in harsh environments.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing.
at the completion of the Phase 2 contract.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

O1.04 Miniaturized Digital EVA Radio

Lead Center: JSC

Participating Center(s): GRC

Lunar outpost surface operations pose unique challenges that demand a compact, power-efficient, and adaptive S-band EVA digital radio with built-in navigation capability. High-performance criteria, tight power constraints, and multi-mode functionality are making mobile terminals increasingly complex. Therefore, NASA needs to advance next-generation digital radio technologies to meet the stringent demands of ultra low power, high reliability, and small form factor. More than a conventional system, the EVA radio infrastructure supports relative navigation, high resolution image processing, voice encoding, networked based IP communications, and dynamic quality of service. By leveraging RF micro-electromechanical system (MEM) components, intelligent middleware, and location aided networking, this solicitation aims to reach TRL 5 by 2012 with breakthrough radio metrics- less than four watts of total power consumption and cell-phone sized form factor.

Operating at 2.4-2.483 GHz (S-band), the digital radio must support multiple bandwidth and data transmissions of voice, telemetry, and video- standard as well as high definition- to fixed and mobile assets, including lunar base station, landers, habitat, rovers, and other astronauts.

To extend battery life, the EVA digital radio must incorporate middleware that optimizes power needed to maintain link quality. Under harsh lunar environmental conditions, the cognitive middleware must optimally match the QoS requirement, the channel condition, and the interference environment as well as select the mode with the least energy profile for power efficiency. As a result, this EVA radio must dynamically and adaptively conserve power on a packet-by-packet basis.

During contingency mode, EVA digital radio will transmit voice and data in half-duplex mode. With novel wireless communication network concepts, the offeror should propose solutions to enable position determination and relative navigation out to a distance of 10km with accuracy of 100 meters (3 sigma).

The Phase 1 effort defines an ultra low-power, high-performance, compact digital radio that incorporates innovative components and novel approaches to meet the above requirements for a single fault tolerant architecture. To achieve dramatic reductions in power and volume, solutions must exploit MEMS for cell phones and handheld (e.g., MEM filters, tunable matching elements, etc.) and other advanced analog/digital components, advanced digital signal processing, as well as next-generation processing elements such as FPGAs and multi-core processors.

Moreover, one must select a promising modular candidate architecture for the above requirements, exploiting emerging commercial wireless network technologies such as WLAN and WWAN. This encompasses identifying transceiver hardware, firmware, and all platform integration issues.

For this solicitation, one can assume EVA digital radio will be part of a mobile ad hoc network infrastructure that is self-configuring, self-discovering, and self-healing. Where all nodes can act as routers for other low power mobile nodes and network coverage has no limit for wireless communications. In other words, the diameter of the network can be increased by adding more nodes.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing.
at the completion of the Phase 2 contract.

Phase 1 Deliverables:

Conduct design tradeoffs between power, performance, and flexibility. Estimate mass, volume, power, max/min range, and data rates for dynamic quality of service (voice, telemetry, video) standard and high definition TV at S-band (2.4 - 2.483 GHz), backed with analyses including lunar propagation effects and comprehensive simulations to ensure achievable performance and power goals. Consider IP voice as an optional feature.

As a prerequisite to Phase 2, one must select a promising architecture that balances ultra low power, mass, size, performance, functionality, and reliability. In fact, the offeror must demonstrate the ability to achieve significant advantages in compactness over a non-MEMS approach and address power efficiency and reliability. Special interests include single-chip design/packaging and integrated circuit-level implementation of RF MEMS.

Propose a preliminary design approach for the next-generation digital EVA radio, leveraging commercial multimedia cellular and WLAN technology. Operating at S-band (2.4-2.483 GHz), MEM filters should be considered to achieve low power consumption and compact, cell-phone sized form factor. Determine the suitability and usage of ultra low power digital devices, compact RF systems, and novel configurations when recommending candidate architectures.

For the middleware, conduct trade-offs and identify the set of required parameters for the ideal radio. Quantify performance in terms of energy savings and the ability to maximize connectivity and throughput in an ad hoc network.

Develop communications and 3D navigation tracking ad hoc network concepts and algorithms that validate the feasibility of the approach. Without GPS, integrated low-power communication and navigation surface assets must track, locate, and identify tagging assets with multiple routes over an operational range of 10 km, even if astronauts descend into craters. Assume the availability of digital terrain maps. Consider low-power approaches that exploit bread crumbs, active/passive RFID systems for ID, position, sensing, etc and expand investigation to modulated retroreflectors based upon MEMS technology or solar-powered beacons.

Simulate the performance of a robust integrated communications and navigation network architecture and conduct preliminary sensitivity analysis for parameterization of the selected implementation strategy. Specifically, describe the division of functionalities between the various components (fixed and mobile) as well as segments (inter-vehicle and mobile-to-fixed node on planetary surface as well as surface-to-orbit (lunar relay satellites).

Phase 2 Deliverables:

Demonstrate RF performance and total power consumption of less than four watts, delivering voice, telemetry, and standard and high-definition video motion imagery at 2.4-2.483 GHz (S-band). Within power budget allocation, verify performance and reliability for multiple bandwidth and data transmissions of telemetry, voice, and high-rate video.

Develop a reliable, intelligent, and power-efficient EVA digital radio prototype unit and demonstrate robust power management and optimization feasibility of the Phase 2 middleware and ad hoc network approach.

Explore radiometric tracking techniques and benefits from location-aided networking to support (limited) relative navigation using an ad hoc network infrastructure during EVA walkback. Moreover, a simulation capability must demonstrate node discovery, location awareness, and route re-configurability as nodes enter and leave the network. Testing will be conducted at an approved site and should comprise of a variety of nodes (fixed and mobile) as well as a suite of applications (non-real time data as well as real-time voice and video).

Develop and demonstrate a working ad hoc network prototype that allows characterization of the following metrics in a static deployment: a) network range, b) aggregate throughput and throughput per user, and c) node and network lifetime.

Deliver open middleware and supporting IP solutions.

Where costs preclude full implementation of all component technologies, provide analysis to extrapolate the
performance of a complete design.

Commercial Potential:

Adaptive radios potentially offer significant cost savings to a wide spectrum of commercial markets including telecommunications and consumer electronics. They also provide for enhanced interoperability and spectrum reuse for Homeland Security applications. New component technologies and radio infrastructures are needed to extend the programmable capabilities into long battery life handsets.

O1.05 Communication for Space-Based Range

Lead Center: GSFC
Participating Center(s): ARC, GRC

Space-Based Telemetry Transceivers may replace Line-of-Sight (LOS) and RADAR based Tracking, Telemetry, and Command (TT&C) flight and ground systems for sub-orbital platforms and orbit-insertion launch vehicles. In order to do so, the transceivers must be capable of providing real-time or near real-time return (data) and forward (command) links of varying bandwidths with industry accepted Quality of Service (QoS) levels. Some applications require the coupling of embedded GPS receivers and attitude determination units, while others require high bandwidth links with common interfaces (i.e., Ethernet). In all cases it is desired to utilize an existing commercial satellite provider with fee-for-service to reduce operating and overhead expenses.

Note: The proposer should be aware of subtopic O4.01, which seeks advancements in GPS metric tracking. This proposal primarily focuses on space-based transceivers. However, advancements made under O4.01 could be incorporated with space-based transceivers in the future.

Purpose

The vision of Space-Based Range architecture is to assure public safety, reduce the costs of launch operations, enable multiple simultaneous launch operations, decrease response time, and improve geographic and temporal flexibility. It is desired to reduce or eliminate the need for redundant range assets and deployed down-range assets that are currently used to provide for LOS TT&C with sub-orbital platforms and orbit-insertion launch vehicles. This solicitation seeks to achieve this by focusing on specific needed advancements in TT&C.

There are varying applications for space-based transceivers, each necessitating a different set of requirements. Low data rate and very low cost transceivers coupled with highly accurate GPS receivers may be used to measure wind velocities to determine flight conditions and accurate trajectory predictions. These could also be used to track low risk payload or vehicle components for recovery purposes. Higher dynamic vehicles require a more robust transceiver with embedded position and attitude determination units to track vehicle trajectories through space insertion or for recovery purposes. High data rate transceivers with a commonly used interface could be used across multiple platforms for primary or redundant data dispersion and command control.

The proposer should address one of the following three need areas below:

Low Cost and Low SWAP Transceiver with Integrated GPS Receiver

Core Capabilities should include:

- Utilize existing commercial satellite provider with fee for service. Limit the user burden to provide adequate effective isotropic radiated power (EIRP) for providing acceptable link margins.
- Low Cost: several hundred dollars or less (throw-away).
- Low size, weight, and power (SWAP): 10 cubic inches or less, weigh less than 0.25 lbs, consume less than
Ability to operate up to +/- 70 deg latitude (all latitudes preferred).
Ability to sample time, position \((x, y, z)\), and velocity \((x, y, z)\) solutions at a min of 10Hz.
Ability to downlink the 10Hz or better sampled data with low latency (several seconds or better) and little to no loss (not to include ground infrastructure latency, i.e., internet latency).
Ability to receive data and send commands from one location anywhere in the world via IP. However, an RF link could be used as a backup for remote locations.
Ability to accept near real-time commands (latency of several seconds or better) and provide firmware level actions/responses (e.g.: to select alternate downlink data format).
Highly accurate GPS solutions. Commercial-off-the-Shelf (COTS) embedded units may be utilized but repackaging may be needed to provide a single, integrated Over-the-Horizon (OTH) tracker. Independent Kalman Filtering techniques may need to be developed. Velocity jitter is highly undesirable. The ability to lift altitude and velocity (COCOM) restrictions is needed.
Environmental considerations: Operability from sea level to 160,000 ft with operating temperatures of -20°C to +60°C. Vehicle dynamics are relatively benign. Duration of mission operation is several hours.

Ground Software to view the telemetered data.

Optional Capabilities: The ability to operate at all latitudes. The ability to interface a small number of sensors (TTL, Analog-to-Digital, and/or serial interfaces) for sampling and transmit. Operating temperatures of -40°C to +85°C. The ability to allow uplink commands to change the state of on-board TTL level outputs. Ability to receive data and send commands from multiple locations via IP. Open source or factory customizable firmware.

Highly Dynamic Transceiver with Integrated GPS Receiver and Attitude Determination

Core Capabilities should include:

- Utilize existing commercial satellite provider with fee for service. Limit the user burden to provide adequate EIRP for providing acceptable link margins.
- Low cost, size and weight commensurate with materials and techniques used. Power consumption less than 5W (on avg).
- Ability to operate up to +/- 70 deg latitude (all latitudes preferred).
- Ability to sample time, position \((x, y, z)\), velocity \((x, y, z)\), and vehicle dynamics (accelerations, pitch, and roll) at a min of 20Hz.
- Ability to downlink the 20Hz or better sampled data with very low latency (preferably sub-second) and little to no loss (not to include internet latency).
- Ability to accept commands on a real-time basis (preferably sub-second latency) and provide firmware level responses to those commands.
- Ability to receive data and send commands from one location anywhere in the world via IP. However, an RF link could be used as a backup for remote locations.
- Highly accurate integrated position and solid-state attitude solutions. COTS units may be utilized but repackaging may be needed to provide a single integrated OTH tracker. The ability to lift altitude and velocity (COCOM) restrictions is needed.
- Environmental considerations: Operability from sea level up to space insertion is desired (note that radiation hardening is not required). Operating temperatures of -20°C to +60°C are needed. Ability to operate on spin stabilized rockets (up to 7 rps), under sudden acceleration, and under high jerk environments (e.g., launch conditions and separation / jettison events). Duration of mission operation is several hours.
- Ground Software to view the telemetered data.

Optional Capabilities: The ability to operate at all latitudes. The ability to interface a small number of sensors (TTL, A to D, and/or serial interfaces) for sampling and transmit. Operating temperatures of -40°C to +85°C. The ability to allow uplink commands to change the state of on-board TTL level outputs. Ability to receive data and send commands from multiple locations via IP. Open source or factory customizable firmware.

High Data Rate Transceiver

Core Capabilities should include:
Utilize existing commercial satellite provider with fee for service. Limit the user burden to provide adequate EIRP for providing acceptable link margins.

Cost and SWAP commensurate with performance, but all should be kept minimal.

Ability to operate up to +/- 70 deg latitude (all latitudes preferred).

The minimum return bandwidth (data) is 50 kbps but several hundred kbps is desired. The minimum forward bandwidth (command) is 1 kbps but several kbps is desired.

Ability to downlink data with very low latency (preferably sub-second) and little to no loss (not to include ground infrastructure latency, i.e., internet latency).

Ability to receive commands with very low latency (preferably sub-second) and little to no loss from an IP based ground terminal.

Ability to receive data and send commands from one location anywhere in the world via IP. However, an RF link could be used as a backup for remote locations.

The transceiver I/O interface should allow for easy interfacing to multiple platforms. An Ethernet interface is preferred, but lower data rates may allow for an asynchronous serial interface. Depending on the satellite platform chosen, the proposer may have to provide internal buffering and clocking mechanisms to smooth an asynchronous input for proper ground receipt.

Environmental considerations: Operability from sea level up to space insertion is desired (note that radiation hardening is not required). Operating temperatures of -20°C to +60°C are needed. The initial prototype could be tested on low dynamics vehicles, thereby concentrating the focus on performance. However, the ultimate goal is the ability to operate on spin stabilized rockets (up to 7 rps), under sudden acceleration, and under high jerk environments (e.g., launch conditions and separation / jettison events). Duration of mission operation is several minutes to several months.

Ground Software to view the telemetered data.

Optional Capabilities: The ability to operate at all latitudes. Operating temperatures of -40°C to +85°C. Ability to receive data at multiple locations simultaneously via IP. Open source or factory customizable firmware.

In all cases, research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

O1.06 Long Range Optical Telecommunications

Lead Center: JPL

Participating Center(s): ARC, GRC, GSFC

This subtopic seeks innovative technologies for long range Optical Telecommunications supporting the needs of space missions. Proposals are sought in the following areas:

- Systems and technologies relating to acquisition, tracking and sub-microradian pointing of the optical communications beam under typical deep-space ranges (to 40 AU) and spacecraft micro-vibration environments.

- Small lightweight (< 1-Kg), 2-axis gimbals with < 30-μrad rms error and blind-pointing accuracy of < 35-μrad. Must be able to actuate payload mass of approximately 6-Kg at rates up to 5-deg/sec. Assume that the payload is shaped as an 8-cm diameter cylinder, 30-cm long, with uniformly distributed mass. Proposals
should come up with innovative pragmatic designs that can be flown in space.

- Light-weighted afocal optical telescopes with diameters varying from 10-50-cm diameter with an average areal density of < 45 Kg/m2 (Areal density is average over large and small optics used to gather and focus light on to sensors/detectors). The telescopes should be capable of operating in the near-infrared spectral range (1.0 – 1.6 micrometers) with less than a tenth wave root-sum squared wavefront error.
- Uncooled photon counting imagers with >1024 x 1024 formats, ultra low dark count rates and 400 - 2000 nm sensitivity.
- Ultra-low (<0.1%) fixed pattern non-uniformity NIR imagers with large format (1024 x 1024), low noise (<1 e- read, <1ke/pix/sec dark) and high QE (>0.7).
- Nutating fiber pointing mechanisms with high precision (<0.01 urad) and high bandwidth (> 3 kHz).
- Compact, lightweight, low power, broad bandwidth (0 - 3 kHz) disturbance rejection and/or isolation platforms.
- Space-qualifiable, > 20% wall plug efficiency, lightweight, 20-500 psec pulse-width (10 to > 100 MHz PRF), tunable (± 0.1 nm) pulsed 1064-nm or 1550-nm laser transmitter fiber MOPA sources with >1 kW of peak power per pulse (over the entire pulse-repetition rate), with Stimulated Brillouin Scattering (SBS) suppression and > 10 W of average power, near transform limited spectral width, and <10 psec pulse rise and fall times. Also of interest for the laser transmitter are: robust and compact packaging with radiation tolerant electronics inherent in the design, and high speed electrical interface to support output of pulse position modulation encoding of sub nanosecond pulses and inputs such as Spacewire, Firewire or Gigabit Ethernet.Description of approaches to achieve the stated efficiency is a must.
- > 2-m diameter, <30-nm bandpass optical filters on a membrane substrate to pass center. Wavelengths in the 1000 to 1600 nm band with >90% transmission.
- > 2-m diameter f/1.1 primary mirror and Cassegrain focus of ~f/6 optical communication receiver telescopes. Maximum RMS surface figure error of 1-wave at 1000 nm wavelength. Telescope is positioned with a 2-axis gimbal capable of 0.25 mrad pointing. Combined telescope and gimbal shall be manufacturable in quantity (tens) for <$400k each.
- Daytime atmospheric compensation techniques capable of removing all significant atmospheric turbulence distortions (tilt and higher-order components) on an uplink laser beam; and/or for a 2-m diameter downlink receiver telescope. Also of interest are technologies to compensate for the static and dynamic (gravity sag and thermal) aberrations of 2-m diameter telescopes with a surface figure of 10’s of waves.
- Ground-based, relatively low-cost diode-pumped laser technology capable of reaching 100 kW average power levels in a TEM00 mode, for uplink to spacecraft.
- Photon counting Si, InGaAs, and HgCdTe detectors and arrays for the 1000 to 1600 nm wavelength range with single photon detection efficiencies > 60% and output jitters less than 20 psec, active areas > 20 microns/pixel, and 1 dB saturation rates of at least 100 megaphotons (detected) per pixel and dark count rates of < 1 MHz / mm².
- Radiation hard (100 Mrad level) photon counting detectors and arrays for the 1000 to 1600 nm wavelength range with single photon detection efficiencies > 40% and 1 dB saturation rates of at least 30 megaphotons/pixel and operational temperatures above 220 K and dark count rates of < 10 MHz / mm.
- Single-photon-sensitive, high-bandwidth (1 GHz), linear mode, high gain (> 1000), low-noise (< 1 kcps), large diameter (200 micron), HgCdTe avalanche photodiode and/or (small diameter) arrays for optical detection at 1060 nm or 1550 nm.

Research should be conducted to convincingly prove technical feasibility during Phase 1, with clear pathways to demonstrating and delivering functional hardware, meeting all objectives and specifications, in Phase 2.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

O1.07 Long Range Space RF Telecommunications
This solicitation seeks to develop innovative technologies for long-range RF telecommunications supporting the needs of space missions.

Purpose (based on NASA needs) and current state-of-the-art: Future spacecraft with increasingly capable instruments producing large quantities of data will be visiting the Moon and the planets. To support the communication needs of these missions and maximize the data return to Earth innovative telecommunications technologies that maximize power efficiency, transmitted power density and data rate, while minimizing size, mass and power are required.

The current state-of-the-art in long-range RF communications is about 2 Mbps from Mars using microwave communications systems (X-Band and Ka-Band) with output power levels in the low tens of Watts and DC-to-RF efficiencies in the range of 10-25%.

Specifications and Requirements:

- Ultra-small, light-weight, low-cost, low-power, modular deep-space transceivers, transponders, and components, incorporating MMICs and Bi-CMOS circuits;
- MMIC modulators with drivers to provide large linear phase modulation (above 2.5 rad), high-data rate (10 - 200 Mbps), BPSK/QPSK modulation at X-band (8.4 GHz), and Ka-band (26 GHz, 32 GHz and 38 GHz);
- High-efficiency (> 60%) Solid-State Power Amplifiers (SSPAs), of both medium output power (10 W - 50 W) and high-output power (150 W - 1 KW), using power combining techniques and/or wide band-gap semiconductor devices at X-band (8.4 GHz) and Ka-band (26 GHz, 32 GHz and 38 GHz);
- Epitaxial GaN films with threading dislocations less than 106 per cm2 for use in wide band-gap semiconductor devices at X- and Ka-Band;
- Utilization of nano-materials and/or other novel materials and techniques for improving the power efficiency or reducing the cost of reliable vacuum electronics amplifier components (e.g., TWTAs and Klystrons);
- SSPAs, modulators and MMICs for 26 GHz Ka-band (lunar communication);
- TWTAs operating at millimeter wave frequencies (e.g., W-Band) and at data rates of 10 Gbps or higher;
- Ultra low-noise amplifiers (MMICs or hybrid) for RF front-ends (< 50 K noise temperature); and
- MEMS-based RF switches and photonic control devices needed for use in reconfigurable antennas, phase shifters, amplifiers, oscillators, and in-flight reconfigurable filters. Frequencies of interest include VHF, UHF, L-, S-, X-, Ka-, V-band (60 GHz) and W-band (94 GHz). Of particular interest is Ka-band from 25.5 - 27 GHz and 31.5 - 34 GHz.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Phase 1 Deliverables: Feasibility study, including simulations and measurements, proving the proposed approach to develop a given product. Verification matrix of measurements to be performed at the end of Phase 2, along with specific quantitative pass-fail ranges for each quantity listed.

Phase 2 Deliverables: Working engineering model of proposed product, along with full report of on development and measurements, including populated verification matrix from Phase 1.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.
O1.08 Lunar Surface Communication Networks and Orbit Access Links

Lead Center: GRC
Participating Center(s): ARC, GSFC, JPL, JSC

This solicitation seeks to develop a highly robust, bidirectional, and disruption-tolerant communications network for the lunar surface and lunar orbital access links. Exploration of lunar and planetary surfaces will require short-range (~1.6 km line-of-sight, ~5.6 km non-line-of-sight) bi-directional, and robust multiple point links to provide on-demand, disruption and delay-tolerant, and autonomous interconnection among surface-based assets. Some of the nodes will be fixed, such as base stations and relays to orbital assets, and some transportable, such as rovers and humans. The ability to meet the demanding environment presented by lunar and planetary surfaces will encompass the development and integration of a number of communication and networking technologies and protocols. NASA lunar surface networks will be dynamic in nature, and required to deliver multiple data flows with different priorities (operational voice, command/control, telemetry, various qualities of video flows, and others). Bandwidth and power efficient approaches to mobile ad hoc networks are desired. Quality of Service (QoS) algorithms in a Mobile Ad hoc NETwork (MANET) setting will need to be developed and tailored to NASA mission specific needs and for the lunar surface environment.

These lunar and planetary surface networks will need to seamlessly interface with communications access terminals and orbiting relays that also can provide autonomous connectivity to Earth based assets. The access link communications system will encompass the development and integration of a number of communications and networking technologies and protocols to meet the stringent demands of continuous interoperable communications. Human exploration, therefore, requires the development of innovative communication protocols that exploit persistent storage on mobile and stationary nodes to ensure timely and reliable delivery of data even when no stable end-to-end paths exist. Solutions must exploit stability when it exists to nearly approximate the performance of conventional MANET protocols. The lunar surface communications network must support 15 simultaneous users with aggregate bandwidth of 80 Mbps. It must also support minimum data rates of 16 kbps and maximum data rates of 20 Mbps and be IP compatible with a BER of 10e-8 or less, and graceful degradation. Frequency bands of interest are UHF (401 - 402 MHz, 25 kHz bandwidth), S-band (2.4 - 2.483 GHz), and Ka-band (22.55 - 23.55 GHz).

Core capabilities:

- Short range access point, base stations, and wireless router bridges for extending surface network coverage;
- Non-line-of-sight communication between stationary and moving assets, outside or inside lunar craters without using orbiting assets;
- Analog voice-only radio service to the lunar outpost and the lunar relay satellite at the highest network priority for HF, UHF, or S-band for reliability;
- Support multiple bandwidths for telemetry, voice, and high-rate video;
- Ability to determine the QoS, channel, and interference information;
- Autonomously reconfigurable receivers capable of automatic link configuration and management;

Proposals should address the following areas:

- Disruptive and delay-tolerant networking (DTN);
- Networking algorithms and adaptive routing;
- Extra-Vehicular Activity (EVA) radio.

The following technologies are addressed under other SBIR Subtopic solicitations:

- Antennas for surface and orbital access communications required for the aforementioned goals shall be developed under subtopic O1.02;
- Radios for surface and orbital communications required for the aforementioned goals shall be developed under subtopic O1.03;
- Optical transceivers required for the aforementioned goals shall be developed under subtopic O1.06;
Any high rate, low power, efficient amplifiers or transponders required for the aforementioned goals shall be developed under subtopic O1.07.

Development Timeline: After a possible Phase 3 development activity, these technologies are expected to ready for insertion at TRL 6 by 2014. To meet the schedule for NASA’s Vision for Space Exploration (VSE), a TRL progression from an entry TRL of 1-2 for Phase 1 in January 2009 followed by an exit TRL of 3 - 4 after Phase 2 is required.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Phase 1 Deliverables:

Propose a robust lunar surface and orbit access communications network suitable for the applications and environment. Address all technical challenges, pitfalls, and tradeoffs of the network size, assets, and power as well as reliability, complexity, and performance. Solutions should encompass a notional architecture, functional requirements, and building block concepts, demonstrating a reliable and simultaneous voice, telemetry, and video transmission as well as reconfigurability across multiple applications and frequency bands.

Develop suitable communication algorithms capable of demonstrating the feasibility of the approach. Based on a minimum of three (3) nodes, simulate the performance of the proposed integrated communications network architecture and analyze the selected implementation strategy. Identify required parameters for the network architecture and quantify performance in terms of energy savings, connectivity, and throughput in a mobile ad hoc network.

Phase 2 Deliverables:

Develop a communications network with multi-functional capabilities described in above. Further enhance the concepts investigated in Phase 1 and demonstrate the feasibility of the approach on an actual platform.

Fabricate and test a prototype communications network with a minimum of three (3) nodes using an active integrated communication network. Simulate and refine power software algorithms for real time robust operations and characterize system performance in compliance with the design goals outlined in Phase 1.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

O1.09 Software for Space Communications Infrastructure Operations

Lead Center: JPL
Participating Center(s): ARC, GRC, GSFC

New technology is sought to improve resource optimization and the user interface of planning and scheduling tools for NASA’s Space Communications Infrastructure. The software created should have a commercialization approach with the new modules fitting into an existing or in development planning and scheduling tool.

Purpose (based on NASA needs) and the current state of the art: The current infrastructure for NASA Space Communications provides services for near-Earth spacecraft and deep space planetary missions. The infrastructure assets include the Deep Space Network (DSN), the Ground Network (GN), and the Space Network (SN). Recent planning for the Vision for Space Exploration (VSE) for human exploration to the Moon and beyond
as well as maintaining vibrant space and Earth science programs resulted in a new concept of the communications architecture. The future communications architecture will evolve from the present legacy assets and with addition of new assets.

NASA seeks automation technologies that will facilitate scheduling of oversubscribed communications resources to support: (1) Increased numbers of missions and customers; (2) Increased number and complexity of constraints (as required by new antenna types); and (3) decreased operations budgets (both core communications network operations and mission side operations budgets).

Core Capabilities:

Intelligent Assistants

In order to automate the user's provision of requirements and refinement of the schedule, "intelligent assistant" software should manage the user interface. Assistants should streamline access and modification of requirement and schedule information. By modeling the user, this software can adjust the level of autonomy enabling decisions to be made by the user or the automated system. Assistants should try to minimize user involvement without making decisions the user would prefer to make. The assistants should adapt to the user by learning their control preferences. This technology should apply to local/centralized and collaborative scheduling.

In a conflict-aware scheduling system (especially in a collaborative scheduling environment), conflicts are prevalent. With the concept of one big schedule from the beginning of time, real time, to the end of time, resolving conflicts become a difficult task especially since resolving conflicts in a local sense may affect the global schedule. Therefore, an intelligent assistant may provide decision support to the system or the users to assist conflict resolution. This may involve a set of rules combining with certain local/global optimization to generate a list of options for the system or users to choose from.

Resource Optimization

The goal of schedule optimization is to produce allocations that yield the best objectives. These may include maximizing DSN utilization, minimizing loss of desired tracking time, and optimizing project satisfaction. Each project may have their own definition of satisfaction such as maximal science data returned, maximal tracking time, best allocation of the day/week, etc. The difficulty is that we may not satisfy all of these objectives during the optimization process. Obviously, optimal solution for one objective may produce worse results for the other objectives. One possible solution is to map all of these objectives to an overall system goal. This mapping is normally non-linear. Technology needs to be developed for this non-linear mapping for scoring in addition to regular optimization approaches.

Optional Capabilities:

Multiple Agents

In an environment where all system variables can be controlled by a single controller, an optimal solution for the objective function can be achieved by finding the right set of variables. In a collaborative environment with multiple decision makers where each decision maker can only control a subset of the variables, modeling and optimization become a very complex issue. In the proposed collaborative scheduling approach, there are many users/agents that will control their own allocations with interaction with the others. How we model their interactions and define system policy so the interaction can achieve the overall system goal is an important topic. The approach for multiple decision-maker collaboration has been studied in the area of Game Theory. The applications cover many areas including economics and engineering. The major solutions include Pareto, Nash, and Stackelberg. There are many new research areas including incentive control, collaborative control, Ordinal Games, etc. Note that intelligent assistants and multiple agents represent different points on the spectrum of automation. Current operations utilize primarily manual collaborative scheduling, intelligent assistants would enhance users ability to participate in this process and intelligent agents could more automate individual customers scheduling. Ideally, proposed intelligent assistants and distributed agents would also be able to represent customers who do not wish to expose their general preferences and constraints.
A start for reference material on this subtopic may be found at the following:

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Phase 1 Deliverables: Propose demonstration of Intelligent Assistants, Resource Optimization, or Multiple Agents on a number of communication asset allocation problem sets (involving dozens of missions, communications assets, and operational constraints). End Phase deliverable would include a detailed rationale for ROI in usage of said technology to communications asset allocation based on knowledge of current and future operations flows.

Phase 2 Deliverables: Demonstrate Intelligent Assistants, Resource Optimization, or Multiple Agents on actual or surrogate communication asset scheduling datasets. Deliverables would include use cases and some evidence of utility of deployment of developed technology.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

Space Transportation Topic O2
Achieving space flight can be astonishing. It is an undertaking of great complexity, requiring numerous technological and engineering disciplines and a high level of organizational skill. Overcoming Earth's gravity to achieve orbit demands collections of quality data to maintain the security required of the range. The harsh environment of space puts tight constraints on the equipment needed to perform the necessary functions. Not only is there a concern for safety but the 2004 Space Transportation Policy directive that states that the U.S. maintains robust transportation capabilities to assure access to space. Given this backdrop, this topic is designed to address technologies to enable a safer and more reliable space transportation capability. Automated collection of range data, and instrumentation for space transportation system testing are all required. The following subtopics are required to secure technologies for these capabilities.

Sub Topics:

O2.01 Automated Collection and Transfer of Launch Range Surveillance/Intrusion Data

Lead Center: KSC
Participating Center(s): GSFC, MSFC
NASA is seeking innovative technologies for sensors and instrumentation technologies which expedite range clearance by providing real-time situational awareness for safe Range operations from processing to launch and recovery. These sensors and instruments are expected to operate, as a payload, on mobile or deployable Unmanned Aerial Systems (UAS), High Altitude Airships (HAA), buoys, etc.

Purpose: NASA is embarking on a new era of space exploration with new launch vehicles and demands for availability to support launch times within hours of one another to ensure mission success. This availability requirement is allocated across the entire launch operations which includes the Range that provides clear corridor of land, air and sea for the vehicles to transit through, as they ascent or return. The current Range infrastructure is aging, labor intensive and independent, and would benefit from new sensors and instrumentation that improve the situational awareness to those that are responsible for ensuring public safety, mission assurance and efficient operations.

To aid in this situational awareness the new sensors and instrumentation must be able to operate in the environment that takes advantage of mobile or deployable Unmanned Aerial Systems (UAS), High Altitude Airships (HAA), buoys, etc. Use of these vehicles as a platform is intended to increase the Ranges availability while reducing the cost of operations. Size, power, weight and stability of these systems, that operate on these platforms, will be a major constraint their use.

These sensors and instrumentation provide for the remote detection, recognition, and identification of persons and objects that have intruded into areas of the range that must be cleared in order to conduct safe launch operations. This would include a wide spectrum of optical, infrared, Radio Frequency (RF), and millimeter wave sensors for this purpose. In order to achieve accurate identification, time and position of intruding entities multiple sensors and instruments may be used, or combined through the use of neural networks and data fusion techniques. This will require the use of standards for communications, so that, data from individual sensors or instruments can be combined on a platform and processed on-board, or communicated to central location where a fused solution is processed.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

O2.02 Ground Test Facility Instrumentation

Lead Center: SSC
Participating Center(s): GRC, MSFC

Ground testing of propulsion systems continues to be critical in meeting NASA's strategic goals. Advanced ground testing technologies and capabilities are crucial to the development, qualification, and flight certification of rockets engines. The ability to quickly and efficiently perform ground system certification greatly impacts all space programs. Proposals are sought in the following areas:

Instrumentation and Smart Sensors

Innovative network enabled sensors/instruments capable of providing data, a measure of the quality of the data, and a measure of their health are needed. Sensors may be wired or wireless. Smart instruments/sensors that enable improved rocket test operations must provide many of the following characteristics: simplify and standardize the configuration and maintenance of sensor systems; reduce integration time and errors; expedite fault identification, isolation, assessment, and recovery; facilitate reuse; contribute to improved system integration, decrease cabling mass; decrease costs associated with cable/connector fabrication; distribute computing resources; improve reliability and availability; reduce mean-time to recovery after a failure.

Current challenges include: computational power within the sensor to extract features of interest; full
implementation of IEEE 1451 family of Smart Sensors and Actuators Standards (plug & play functionality); miniaturization; ease of adding/modifying software for continued evolution of the “smart/intelligent” capabilities.

Integrated Failure Detection, Isolation, and Recovery (IFDIR)

Innovative technologies are needed to enable implementation of affordable, modular, and evolvable IFDIR, including architectures, taxonomies, and ontologies; standards for interoperability; integration software environments; algorithms, approaches, and strategies for anomaly detection, diagnosis, prognosis; user interfaces for integrated awareness of system health and readiness for operations. IFDR must be achieved in the context of comprehensive and continuous vigilance.

Major challenges include software environments for integration, adherence to standards for interoperability, and validated algorithms/approaches/strategies for anomaly detection.

Processing and Operations Topic O3
The Space Operations Mission Directorate (SOMD) is responsible for providing mission critical space exploration services to both NASA customers and to other partners within the U.S. and throughout the world: from flying the Space Shuttle, to assembling the International Space Station; ensuring safe and reliable access to space; maintaining secure and dependable communications between platforms across the solar system; and ensuring the health and safety of our Nation's astronauts. Each of the activities includes both ground-based and in-flight processing and operations tasks. Support for these tasks that ensures they are accomplished efficiently and accurately enables successful missions and healthy crew.

Sub Topics:

O3.01 Crew Health and Safety Including Medical Operations

Lead Center: JSC
Participating Center(s): ARC, GRC

Determining the probability of certain types of events (such as medical conditions) can be tricky. Often there is not enough space-flight data to make a good determination and so other types of evidence are used such as expert opinion, analog data, controlled studies, etc. Each source of evidence must be documented (e.g., as a publication citation, or as a data pull against some data source along with the query parameters used). The source is also characterized as to its “level of evidence” using the Cochrane methodology as documented in the National Guideline Clearinghouse (http://www.guideline.gov/summary/summary.aspx?doc_id=4913 [6]). There are many methods for combining these evidence pieces. A software system is sought that can be used to collect the evidence (references to evidence sources such as journal publications, population statistics, analog study, etc.) and which facilitates the evidence level assignment (providing a place to record the evidence level and definitions of each level). Furthermore the system should provide a model for combining these evidence sources in a principled manner that characterizes the certainty of the conclusion reached, e.g., a weighted equation where the weights may be adjusted by the users of the system.

Relevance: Evidence of events drives risk assessment. Depending on the risks identified, decisions can be made as to whether to mitigate the risk via pre-flight activities or in-flight capabilities. Such a system supports “what would happen if” type reasoning that enables exploration of different mission options.
Challenge Addressed: Capturing the evidence base in one place along with additional categorization (level of evidence, uncertainty, quality of evidence, etc.) is invaluable in preserving decision-making rationale such that the decisions can be revisited if additional evidence/information is added later. Determining where to spend limited resources wisely is supported – e.g., balance funding between development of pre-flight mitigation strategies, in-flight capability development, investigation of knowledge gaps (uncertainties), and risk acceptance decisions.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

O3.02 Human interface systems and technologies for spacesuits

Lead Center: GRC

Participating Center(s): ARC, JSC, KSC

The primary medium for sending and receiving information from a crewmember is two-way voice communications. The function of the voice communications system may be extended to include data entry through the inclusion of a Automatic Speech Recognition (ASR) systems. Recent developments in ASR have lead to systems that are capable of connected word identification or speaker-independent word identification. These systems rely on very high fidelity audio link to the talker’s speech.

While speech recognition technology has enjoyed significant advances in recent decades, alternate technologies for data entry exist. Such systems may enjoy advantages over speech recognition for the spacesuit application in areas such as overall Size, Weight and Power (SWaP) or system robustness.

The focus of this subtopic is on the development of systems and technologies in support of high fidelity speech and data entry for space suits. In addition to providing the necessary audio fidelity for ASR, the high fidelity audio systems also result in better voice communications for human-to-human communications. The topic therefore includes the related areas of inbound audio systems and hearing protection systems.

High Fidelity, In-Helmet Audio Systems

The space suit environment presents a unique challenge for capturing and transmitting speech communications to and from a crewmember. The in-suit acoustic environment is characterized by highly reflective surfaces, causing high levels of reverberation, as well as spacesuit-unique noise fields. Known sources of noise within the suit are both stationary and transient in nature. Noise within the suit can be acoustically borne or it can originate from structure-borne vibration. Noise originates from suit machinery, footfalls, suit arm and hip bearing, body movement noise and turbulent flow noise from devices such as oxygen spray bars and breath noise. Static pressure levels within the spacesuit can range from a small fraction of an atmosphere during Extravehicular Activity (EVA) operations to strong hyperbaric conditions that exist during terrestrial field-testing. These changes in static pressure level have significant effects on acoustic transduction. Additionally, in some spacesuits, the crewmember is afforded a wide range of motion within the torso of the suit. The wide range of motion means that the acoustic path between an crewmember’s mouth or ear and the microphone or helmet mounted speaker varies significantly with movement, resulting in decreased sound pressure levels at the microphone and/or increased interference from competing background noise sources. In addition, vehicular operations can generate high levels of noise that are not fully attenuated by the spacesuit, helmet or headsets. Due to these factors, the quality of speech delivered to and from the inside of a spacesuit helmet can be low and can have a negative effect on inbound and outbound speech intelligibility and the performance of Automatic Speech Recognition (ASR) systems.

The traditional approach to overcome the challenges of the spacesuit acoustic environment is to use a skullcap-based system of microphones and speakers. Cap-based solutions mitigate many of the acoustic problems associated with in-helmet communications systems through the very short and direct acoustic transmission paths between the crewmember and the speakers and microphones. The skullcap’s headsets and noise canceling...
microphones can also afford some degree of acoustic isolation for the crewmember from noise generated inside
the spacesuit. Cap-based systems are less successful, however, in attenuating high noise levels generated outside
the spacesuit (e.g., during launch, descent, burn activities, or emergency aborts), even when coupled with the
launch/entry helmet. The use of noise canceling microphones can improve speech intelligibility, but only if the
microphones are in close proximity to the crewmember’s mouth. Many logistical issues exist for head-mounted
caps. Crewmembers are not able to adjust the skullcap, headset or microphone booms during EVA operations
(which can last from four to eight hours) or during launch/entry operations. Interference between the protuberances
of the cap and other devices such as drinking/feeding tubes is a recognized issue during EVA. Comfort, hygiene,
proper positioning and dislocation are major concerns for head-mounted caps. Wire fatigue and blind mating of the
connectors are also problems with the cap-based systems. In order to accommodate anthropometric variations in
crew heads, multiple cap sizes are required. Issues have recently been identified with existing communications
systems regarding adjustment of microphone boom lengths, proper function over the wide ranges of static pressure
experienced during suited operations, flow noise over the microphone elements, and integration with advanced
helmet designs.

NASA is seeking systems, subsystems and/or technologies in support of improvements in speech intelligibility,
speech quality, listening quality and listening effort for in-helmet aural and vocal communications. In addition,
improvements in hearing protection are sought to protect the crew during all mission phases, in case hazardous
acoustic levels and conditions occur.

The specific focus of this SBIR subtopic is on improving the interface between crewmember and the acoustic
pickup (i.e., microphones) and generation (i.e., speaker) systems. Systems and devices are sought to improve or
resolve acoustic, physical and technical problems (listed above) that have been associated with skullcap-mounted
speakers and microphones, or allow for the elimination of skullcap-mounted speakers and microphones. In
particular, voice communications systems are sought that have provided crewmembers with adequate speech
intelligibility over background noise within, and external to, the spacesuit. Overall system performance must provide
Mean Opinion Score (MOS) for Listening Quality (Lq) and Listening Effort (Le) of 3.9 or greater, or Articulation
Index (AI) of .7 or better or 90% Speech Intelligibility (SI) in the crewmember's native language for both inbound
and outbound speech communication. Specific technologies of interest include, but are not limited to:

- Acoustic modeling of the in-suit acoustic environment, including the ability to model structure-borne
 vibration in helmet and suit structures as well as transduction to and from the acoustic medium.
- Low-mass, low-volume, low-distortion, space-qualified speakers with low variation in sensitivity with static
 pressure. Changes in speaker sensitivity should be less than 2 dB over the speech band with changes in
 static pressure between 3 and 18 psia.
- Low-mass, low-volume, low-distortion high-sensitivity (> 5 mV/Pa), space-qualified noise canceling
 microphones with low variation in sensitivity with static pressure. Changes in microphone sensitivity should
 be less than 2 dB over the speech band with changes in static pressure between 3 and 18 psia.
- Attenuation of external noise by passive hearing protection that is comfortable for crewmembers during
 extended use.
- Development of theories, experiments and analysis in support of decomposition of end-to-end SI and/or
 MOS requirements to the spacesuit portion of EVA-to-Mission Operations Center (MOC), EVA-to-EVA or
 EVA-to-habitat voice loops. Comparison of SI system fidelity metrics to MOS system fidelity metrics.

In-helmet devices will need to be compatible with high humidity, low humidity and pure oxygen environments.
Devices should be able to fit a wide anthropometric range of head and physical features found within the astronaut
corps.

Additionally, demonstrations of novel system concepts for in-helmet audio communication are of strong interest. A
partial list of such concepts includes:

- Near-field beamforming systems;
- Optical microphone systems;
- Highly directive sound production systems such as parametric sound systems;
- Active noise cancellation systems for hearing protection;
- Bone conduction microphones.
Advanced Data/Text Entry for Spacesuits

The space suit environment presents a unique and challenging environment for control of suit-mounted processing equipment. Terrestrial user-interface devices for controlling portable processing equipment such as laptop computers typically rely on keyboard or touchpad input. Such devices are problematic in the space environment since a suited crewmember must interact with the processing equipment while wearing a pressurized glove. Speech recognition technologies have been proposed and investigated to provide user input, but alternative methods are also desired.

Currently, a suit’s processing system has been primarily for providing life-support data-acquisition, monitoring, telemetry, and crewmember alerts. The traditional approach to interact with the EVA processing system is with suit-mounted toggle switches optimally sized for a gloved hand and located in the suit’s chest area. NASA envisions future generations of suits to contain advanced communication, navigation, and information processing capabilities that will require better ways of interacting with the suited crewmember. It is likely that the processing unit(s) will be installed within the suit’s backpack-mounted portable life support unit or in close proximity.

Crewmember usability and efficient operation are prime features of the next-generation input device. The device must operate robustly in the space and lunar environment and be tolerant of dust, vacuum, and radiation exposure. During Extra-Vehicular Activity (EVA), a suited crewmember needs to achieve as high a level of mobility as possible, so a suit-mounted computer-input device must not impede the movements of the suited crewmember or unduly burden the suit system with weight, volume, or electrical power constraints.

NASA is seeking systems, subsystems and/or technologies in support of improvements in suit-mounted computer system user-interface devices. Particular interest is in areas allowing the suited crewmember to control a computer processing system and provide text input accurately, at high speed, without little or no user fatigue for purposes such as note taking or control of the computer display screen. Possible approaches include chording keyboards, suit or glove mounted fabric keyboards or touch-pads or other technologies. Other technologies will also be considered. Concepts may consider both solutions installed internally (within the pure-oxygen pressurized envelop of the suit), externally (mounted on the exterior of the suit), or a combination of the two.

Techniques for routing wires or connections between the user interface device and the computer processing unit are also of interest. Techniques for routing the wires past bearings or avoidance of such will be considered.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Systems and devices must include appropriate computer processing systems. The expectation is that a working and fully functional system or device will be delivered at the end of Phase 2.

O3.03 Vehicle Integration and Ground Processing

Lead Center: KSC
Participating Center(s): MSFC, SSC

This solicitation seeks to create new and innovative technology solutions for assembly, test, integration and processing of the launch vehicle, spacecraft and payloads; end-to-end launch services; and research and development, design, construction and operation of spaceport services. The following areas are of particular interest:
Propellant Servicing Technologies Enabling Lower Life Cycle Costs

Technologies for advanced cryogenic fluid storage and transfer, servicing of chilled/densified fluids and advances in state-of-the-art ground insulation are needed to reduce launch operation costs by minimizing consumable losses. Solutions in support of helium conservation and recovery; recapture, reduction, and elimination of cryogenic propellants vented to atmosphere (zero boil-off); insulation for improved storage and distribution minimizing thermal losses; fire resistant liquid oxygen pumping systems; and instrumentation advances to enable high efficiency operations. Providing solutions with higher efficiency, lower maintenance and longer life while improving safety and improving liquid quality delivery.

Corrosion Control

Technologies for the prevention, detection and mitigation of corrosion/erosion in spaceport facilities and ground support equipment including refractory concrete. Solutions for: damage responsive coatings with corrosion inhibitors; poor-performing refractory concrete; protective coatings for non-painted surfaces; and new environmentally friendly protective coating options to replace products lost due to EPA regulation changes. Providing coating/protection solutions that meet current and emerging environmental restrictions and can endure the corrosive and highly acidic launch environment.

Spaceport Processing Systems Evaluation/Inspection Tools

Technologies in support of defect detection in composite materials; methods for determining structural integrity of bonded assemblies; and non-intrusive inspection of COPV, heat shield tiles and painted surfaces. Solutions for detecting and pinpointing corrosion; predicting remaining coatings effectiveness/life expectancy; identifying composite defects and evaluating integrity; non-destructive measurement and evaluation of composite overwrapped pressure vessels; and damage inspection and acceptance testing of Orion heat shield. Providing solutions that reduce inspection times and provide higher confidence in system reliability and safety concerns and lower life cycle costs.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Navigation Topic O4

NASA is seeking innovative research in the areas of positioning, navigation, and timing (PNT) that have relevance to Space Communications and Navigation programs and goals, as described at http://www.spacecomm.nasa.gov [7]. NASA’s Space Communication and Navigation Office considers the three elements of PNT to represent distinct, constituent capabilities: (1) positioning, by which we mean accurate and precise determination of an asset’s location and orientation referenced to a coordinate system; (2) navigation, by which we mean determining an asset’s current and/or desired absolute or relative position and velocity state, and applying corrections to course, orientation, and velocity to attain the desired state; and (3) timing, by which we mean an asset’s acquiring from a standard, maintaining within user-defined parameters, and transferring where required, an accurate and precise representation of time. NASA has divided its PNT interests into six focus areas: (1) Global
Positioning System (GPS) (2) Distress Alerting Satellite System (DASS) (3) Flight Dynamics (4) Tracking and Data Relay Satellite System (TDRSS) (5) TDRSS Augmentation Service for Satellites (TASS) (6) Geodesy This year, NASA seeks technology in focus areas (1), (3), (4), and (5), and related areas that provides PNT support and services for NASA’s current tracking and communications networks and systems—including tracking during launch and landing operations, and research and technology relevant to the planning and development of PNT support and services for NASA’s Project Constellation, including lunar surface operations, and other Exploration and Science Programs that NASA may undertake over the next two decades. Some of the subtopics in this topic could result in products that may be included in a future small satellite flight opportunity. Please see the Science MD Topic S4 for more details as to the requirements for flight opportunities.

Sub Topics:

O4.01 Metric Tracking of Launch Vehicles

Lead Center: KSC
Participating Center(s): GSFC, MSFC

Range Safety requires accurate and reliable tracking data for launch vehicles. Onboard GPS receivers must maintain lock, reacquire very quickly and operate securely in a highly-dynamic environment. GPS Course Acquisition Code (CA) does not require classified decryption codes and has an accuracy of better than 30 m and 1 m/s. Although this accuracy is good enough for most Range Safety needs, better accuracy is needed for antenna pointing, docking maneuvers and attitude determination. CA code also offers little protection against deliberately transmitted false signals or “spoofing”.

This solicitation seeks proposals in the following areas:

- Innovative technologies to increase the accuracy of the L1 C/A navigation solution by combining the pseudoranges and phases of the L1 C/A signals. Factors that degrade the GPS signal can be obtained by differencing the available carrier phase and pseudorange measurements and then removing this difference from the navigation solution.
- Technologies that combine spatial processing of signals from multiple antennas with temporal processing techniques to mitigate interference signals received by the GPS receiver. The coordinated response of adaptive pattern control (beam and null steering) and digital excision of certain interfering signal components minimizes strong jamming signals. Adaptive nulling minimizes interfering signals by the optimal control of the GPS antenna pattern (null steering).

These technologies should be independent of any particular GPS receiver design.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a Phase 2 hardware and software demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

O4.02 Precision Spacecraft Navigation and Tracking

Lead Center: GSFC
Participating Center(s): ARC, GRC, JPL

This solicitation seeks proposals that will serve NASA’s ever-evolving set of near-Earth and interplanetary missions that require precise determination of spacecraft position and velocity in order to achieve mission success. While the definition of “precise” depends upon the mission context, typical scenarios have required meter-level or better position accuracies, and sub-millimeter-level or better velocity accuracies.

Research should be conducted to demonstrate technical feasibility during Phase 1, and show a path toward a Phase 2 hardware and/or software demonstration of a demonstration unit or software package that will be delivered
to NASA for testing at the completion of the Phase 2 contract. The Small Spacecraft Build effort highlighted in Topic S4 (Low-cost Small Spacecraft and Technologies) of the solicitation participates in this subtopic. Offerors are encouraged to take this in consideration as a possible flight opportunity when proposing work to this subtopic.

Purpose: NASA Needs vs. Current State of the Art

This solicitation is primarily focused on NASA’s needs in three focused areas: onboard near-Earth navigation systems; onboard deep-space navigation systems; technologies supporting improved TDRSS-based navigation. Proposals that leverage state-of-the-art capabilities already developed by NASA such as GEONS (http://techtransfer.gsfc.nasa.gov/ft-tech-GEONS.html [8]), Navigator (http://techtransfer.gsfc.nasa.gov/ft-tech-GPS-NAVIGATOR.html [9]), GIPSY, Electra, and Blackjack are especially encouraged. NASA is not interested in funding efforts that seek to “re-invent the wheel” by duplicating the many investments that NASA and others have already made in establishing the current state-of-the-art.

General Operational Specifications and Requirements:

Core Capabilities:

Onboard Near-Earth Navigation System

NASA seeks proposals that would develop a commercially viable transceiver with embedded orbit determination software that would provide enhanced accuracy and integrity for autonomous onboard GPS- and TDRSS-based navigation and time-transfer in near-Earth space via augmentation messages broadcast by TDRSS. The augmentation message should include information on the TDRS orbits, status, and health that could be provided by future TDRS, and should provide information on the GPS constellation that is based on NASA’s TDRSS Augmentation for Satellites Signal (TASS). Proposers are advised that NASA’s GEONS and GIPSY orbit determination software packages already support the capability to ingest TASS messages.

Onboard Deep-Space Navigation System

NASA seeks proposals that would develop an onboard autonomous navigation and time-transfer system that can reduce DSN tracking requirements. Such systems should provide accuracy comparable to delta differenced one-way ranging (DDOR) solutions anywhere in the inner solar system, and exceed DDOR solution accuracy beyond the orbit of Jupiter. Proposers are advised that NASA’s GEONS and DS-1 navigation software packages already support the capability to ingest many one-way forward Doppler, optical sensor observation, and accelerometer data types.

Technologies Supporting Improved TDRSS-based Navigation

NASA seeks proposals that would provide improvements in TDRS orbit knowledge, TDRSS radiometric tracking, ground-based orbit determination, and Ground Terminal improvements that improve navigation accuracy for TDRS users. Methods for improving TDRS orbit knowledge should exploit the possible future availability of accelerometer data collected onboard future TDRS.

Optional Capabilities:

NASA may consider other proposals relevant to NASA’s needs for precise spacecraft navigation and tracking that demonstrably advance the state-of-the-art.

Development Timeline Associated with NASA Needs:

Phase 1 deliverables should include documentation of technical feasibility, which should at minimum show a path toward hardware and/or software demonstration of a demonstration unit or software package in Phase 2.

Phase 2 deliverables should include a demonstration unit or software.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should
O4.03 Lunar Surface Navigation

Lead Center: GRC

Participating Center(s): JSC

In order to provide location awareness, precision position fixing, best heading and traverse path planning for planetary EVA, manned rovers and lunar surface mobility units NASA has established requirements for organic navigation capabilities for surface-mobile elements of lunar missions. This topic will develop systems, technologies and analysis in support of the required capabilities of lunar surface mobility elements. Contemplated navigation systems could employ celestial references, passive or active optical information such as optical flow or range to local terrain features, inertial sensor information or other location-specific sensed data or combinations thereof. However, radiometric measurements are considered to be concomitant to the lunar communications network and the lunar network will likely be used to communicate state information between lunar mission elements. As such, the main emphasis of this topic is on systems that exploit radiometric measurements such as range, Doppler or Angle of Arrival. Radiometric measurements can be considered between lunar mission elements such as surface mobility units, elements of a lunar surface architecture (such as surface landers or habitation units or other surface mobility units) or elements of the lunar communications and navigation infrastructure such as surface communications towers or lunar communication/navigation orbiters. Earth-based nodes are not excluded from consideration, nor are two-way radiometric measurements, nor are non-NASA-standard (e.g. UWB) modulation schemes. Traverse-path planning systems and navigation-specific displays are also of interest.

Emphasis of the development is on navigation accuracy, Size Weight and Power (SWaP), systems that operate effectively with minimal communications/navigation infrastructure (such as towers or orbiters) or with complete autonomy, with minimal crew involvement or completely automatically. Unified concepts and systems that provide a range of hardware capabilities (possibly trading accuracy with SWaP) are of interest. Mature system concepts and technologies including system demonstration with TRL 6 components and internalized (by NASA) standards are required at the end of a Phase 2.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

O4.04 Timing

Lead Center: JSC

Participating Center(s): GRC, GSFC, JPL

One of the most critical components of robust relative navigation is accurate and reliable timing across the entire sensor suite. Clock errors, drift, and drift rates must be estimated and corrected. During extended duration operations small clock errors propagated from measurement to measurement can contribute to continued growth in positional errors. Improved timing estimation and reliability within a general navigation clocking system will improve navigational accuracy.

Purpose: This solicitation aims to develop two unique timing systems. The first timing system (TS) is for a relative navigation sensor suite to be utilized during lunar surface navigation that will utilize multiple sensors at different
The sensor suite may include a star tracker, inertial measurement unit, vision-based feature recognition sensor, and RFID tag ranging devices. The TS will take an accurate time input from the primary base station at irregular intervals and a less accurate clock at periodic intervals from a software defined communications radio. The TS should, in an FPGA only, produce a clock signal suitable for time stamping and a clock pulse for four navigation sensors. This generated clock should be accurate to within 1ms of the base station input clock over a period of five minutes between primary clock inputs. Additionally, clock error, drift, and drift rates of the two input clocks and four output timing streams (time stamp and clock pulse) should be made available for analysis.

The second timing system is for proposals that improve timing standards. NASA seeks proposals that would improve accuracy for both ground-based tracking networks and onboard navigation systems by providing time and frequency standards that exceed the long-term performance of the GPS Block IIR Rb clocks (for ground-based applications) and current flight USO performance and also for tracking networks at ground-based locations. Timing accuracy is of the utmost importance for this TS; however, size, weight, and power consumption are still considerations. The goal of this TS is to improve the timing and frequency standards and, if possible, exceed the long-term performance of the GPS Block IIR Rb clocks in the ground-based application.

Core capabilities: Provide an accurate and self correcting time source suitable for use in a navigation system suite consisting of multiple sensors. The TS clock and time stamp output should be independently adjustable to the needs of the sensors.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration, delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Phase 1 Deliverables:

- A trade study on industry standard timing systems with a focus on overall accuracy and drift performance;
- Report on the tools and systems currently available;
- Recommendations on furthering the state-of-the-art in timing performance.

Phase 2 Deliverables:

- Demonstration of implemented timing system given the necessary inputs;
- Written report and presentation detailing the system performance including electrical and electronic characteristics;
- Delivery of the timing system and the environment used during development;
- Delivery of timing system math models for real-time simulation.

Coding, Modulation, and Compression Topic O1.01

This subtopic aims to develop components in digital communication systems that offer both spectrum and power efficient solutions to NASA's future near-Earth, deep-space science and exploration applications. This area comprises technology in three key areas: forward error-correction (FEC) coding, data compression, and modulation. The state-of-the-art in flight for coding is (1) Reed-Solomon code concatenated with a convolutional codes, (2) turbo codes, and just emerging, (3) Low Density Parity Check (LDPC) codes. The first two have flown many times, and the initial designs for (3) are just being begun now. The state-of-the-art in compression is the CCSDS standard [2]. The state-of-the-art for modulation is BPSK and QPSK for deep space, and BPSK, QPSK, SQPSK, and 8-PSK for near Earth (TDRS).
applications. Technology development is needed and required in the following areas:

Coding

The need is to handle signal degradation due to weather impact in Ka-band, RFI interference, and multi-path fading in NASA’s future missions. A major challenge is developing coding schemes to handle long bursts of errors, up to 100,000 symbols long, at high processing rate. FEC coding technology to protect against long bursts of erasures due to radio frequency interference (RFI), weather conditions, fading, etc. An entirely new protection mechanism is needed for this long-outage scenario -- existing FEC codes of up to 16,000 are insufficient for this purpose. This technology would be needed in time for a first Ka-band-only mission in the 2015 time-frame. The target is a finished product at TRL 5.

Data Compression

The need is for a real-time high-speed hardware decoder for CCSDS 122.0-B-1 (http://public.ccsds.org/publications/archive/122x0b1c1_e1.pdf [2]). (A CCSDS 122.0-B-1 compliant encoder is already inserted into NASA’s mission.) This hardware development effort would be a reference implementation of this standard, that could be used either as the basis for a flight unit, or as an independent validation test module for a flight unit or engineering model. The target is a finished product at TRL 6.

Modulation

Bandwidth efficiency is becoming increasingly important; missions desire simultaneous telemetry and ranging. Modulations and multiple access schemes for multiple spacecraft downlinking to a single antenna; expansion of SNIP code library – find more good PN spreading codes compatible with SNIP library; bandwidth efficient ranging – how to combine ranging with higher order modulations. Technology target is a demonstration at TRL 5.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a Phase 2 hardware and software demonstration and deliver a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

Sub Topics:

Antenna Technology Topic O1.02
NASA seeks advanced antenna systems in the following areas: phased array antennas; ground-based uplink antenna array designs; high-efficiency, miniature antennas; smart, reconfigurable antennas; large aperture inflatable/deployable antennas; and antenna adaptive beam correction with pointing control.

Phased Array Antennas

Low cost phased array antennas are needed to enable communication capabilities in the following areas: lunar and planetary exploration, including links between astronauts, landers, habitats, probes, orbiters, suborbital vehicles such as sounding rockets, balloons, unmanned aerial vehicles (UAVs), and expendable launch vehicles (ELV’s). The frequencies of interest are S-, X-, Ku-, and Ka-band.

The arrays are required to be aerodynamic or conformal in shape for sounding rockets, UAV’s, and expendable platforms. They must also be able to withstand the launch environment. The balloon vehicles communicate primarily with TDRS and can tolerate a wide range of mechanical dimensions. The main challenges to be addressed are low mass, low cost, high power efficiency (i.e., > 40%), and coverage area (i.e., highly steerable). A significant cost reduction for MMIC based arrays is highly desirable. (Typical NRE is ~ $1000.00/element.) Advances in digital beam-forming techniques, including those based on superconducting digital signal processing methods, are also desirable. The expected exit technology readiness level (TRL) is 4.
Ground-based Uplink Antenna Array Designs

NASA is considering arrays of ground-based antennas to increase capacity and system flexibility, to reduce reliance on large antennas and high operating costs, and eliminate single point of failure of large antennas. A large number of smaller antennas arrayed together results in a scalable, evolvable system which enables a flexible schedule and support for more simultaneous missions. Some concepts currently under consideration are the development of medium-size (12-m class) antennas (hundreds of them are expected to be required) for transmit/receive (Tx/Rx) ground-based arrays. A significant challenge is the implementation of an array for transmitting (uplinking), which may or may not use the same antennas that are used for receiving. The uplink frequency will be in the 7.1-8.6 GHz range (X-band) in the near term, and may be higher frequencies in the future; it will likely carry digital modulation at rates from 10 kbps to 30 Mbps. An EIRP of at least 500 GW is required, and some applications contemplate an EIRP as high as 10 TW. A major challenge in the uplink array design is minimizing the life-cycle cost of an array.

Other challenges for ground-based antennas include the development of low cost, reliable components for critical antenna systems; advanced, ultra-phase-stable electronics, and phase calibration techniques; improved understanding of atmospheric effects on signal coherence; and integrated low-noise receiver-transmitter technology. Phase calibration techniques needed to ensure coherent addition of the signals from individual antennas at the spacecraft are also required. It is important to understand whether space-based techniques are required or ground-based techniques are adequate. In general, a target spacecraft in deep space cannot be used for calibration because of the long round-trip communication delay.

Design of ultra-phase-stable electronics to maintain the relative phase among antennas is also needed. These will minimize the need for continuous, extensive and/or disruptive calibrations. A primary related effort currently underway is understanding the effect of the medium (primarily the Earth's troposphere) on the coherence of the signals at the target spacecraft. Generally, turbulence in the medium tends to disrupt the coherence in a way that is time-dependent and site-dependent. A quantitative understanding of these effects is needed. Consequently, techniques for integrating a very low-noise, cryogenically cooled receiver with a medium power (1-200 W) transmitter, are desired. If transmitters and receivers are combined on the same antenna, the performance of each should be compromised as little as possible, and the low cost and high reliability should be maintained.

Under the ground-based antenna area, the exit TRL should be greater than or equal to 4.

High-Efficiency, Miniature Antennas

High efficiency, low-cost, low-weight, miniaturized antennas that are wearable antennas or can be highly integrated into the structure. Example of EVA's space suits made with textile antennas or visor mounted antennas. The antennas may be fractal antennas but also multi-directional to support astronaut mobility, multiband operation and/or broad bandwidth. Antennas should be low/self-powered, small, and efficient, and compatible with communication equipment that can provide high data rate coverage at short ranges (~1.5-3 km, horizon for the Moon for EVA). In-situ low-gain antenna (UHF or X-band) that provide circular polarization with full hemispherical coverage (zenith as well as over the horizon) are desirable.

Smart, Reconfigurable Antennas

NASA is interested in smart, reconfigurable antennas for applications in lunar and planetary operations. The characteristics to consider include the frequency, polarization, and the radiation pattern. Low-cost approaches are encouraged to reduce the number of antenna apertures needed to meet the requirements associated with lunar and planetary surface exploration (e.g., rovers, pressurized surface vehicles, habitats, etc.). Desirable features include multibeam operation to support connectivity to different communication nodes on lunar and planetary surfaces or in support of communication links for satellite relays around planetary orbits. Also the antenna shall be highly directive, multi-frequency and compatible with Multiple Input Multiple Output (MIMO) concept.

The exit TRL should be 4.

Large Aperture Inflatable/Deployable Antennas

Large deployable or inflatable membrane antennas to significantly reduce stowage volume (packaging efficiencies
as high as 50:1), provide high deployment reliability, and significantly reduced mass density (i.e., <1kg/square meter) are needed. These large Gossamer-like antennas are required to provide high-capacity communication links with low fabrication costs from the Moon/Mars surface to relay satellites or Earth. These membrane antennas are deployed from a small package via some inflation mechanism. Techniques for rigidizing these membrane antennas without the use of gases (e.g., ultraviolet curing), as well as thin-membrane tensioning and support techniques to achieve precision and wrinkle-free surfaces, in particular for applications at Ka-band or higher frequencies is desirable.

Novel materials (including memory matrix materials), low fabrication costs and deployment and construction methods using low emissivity materials to enable passive microwave instrument application are also beneficial. Structural health monitoring systems, needed to support pre-flight integration / test activities and determine health of system in-flight, are of interest. The challenge is to generate designs incorporating structural considerations (e.g., aero-braking for deep space planetary missions).

Antenna Adaptive Beam Correction with Pointing Control

Antenna adaptive beam correction with pointing control that can provide spacecraft knowledge with fine beam pointing with sub-milliradian precision (e.g., < 250 micro-radians) in order to point large spacecraft antennas (e.g., 10-m diameter) in Mars’ vicinity is also desirable under this subtopic. The challenges include reduced antenna reflector surface distortions in a space environment; compensation techniques to optimize antenna beam patterns; ground- and space-based methods to monitor spacecraft antenna distortions; and advanced technologies that enable antenna pointing accuracies in the sub-milliradian range for Ka-band spacecraft applications. Methods of dealing with extreme latency (e.g., 20 minutes) in beacon and monopulse systems are of interest. Advances would lead to enhanced space communication links. The resulting developments should be at TRL 4. Size weight and power requirements are of concern.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Development Timeline: After a possible Phase 3 development activity, these technologies are expected to ready for insertion at TRL 6 by 2014. Therefore a TRL progression from an entry TRL of 1-2 for Phase 1 in January 2009 followed by an exit TRL of 3 - 4 after Phase 2 is reasonable.

Phase 1 Deliverables: A final report containing optimal design for the technology concept including feasibility of concept, a detailed path towards Phase 2 hardware and/or software demonstration. The report shall also provide options for potential Phase 3 funding from other government agencies (OGA).

Phase 2 Deliverables: A working proof-of-concept demonstrated and delivered to NASA for testing and verification.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

Sub Topics:

Reconfigurable/Reprogrammable Communication Systems Topic O1.03

NASA seeks novel approaches in reconfigurable, reprogrammable communication systems to enable the vision of Space, Exploration, Science, and Aeronautical Systems. Exploration of Martian and Lunar environments will require advancements in communication systems to manage the demands of the harsh space environment on space electronics, maintain flexibility and adaptability to changing needs and requirements, and provide flexibility and survivability due to increased mission durations. NASA missions can have vastly different transceiver requirements (e.g., 1’s to 10’s Mbps at UHF and S-band frequency bands up to 10’s to 1000’s Mbps at X, and Ka-band frequency bands.) and available resources depending on the science objective, operating environment, and spacecraft resources. For example, deep space missions are often power constrained; operating over large distances, and subsequently have lower data transmission rates when compared to near-Earth or near planetary
satellites. These requirements and resource limitations are known prior to launch; therefore, the scalability feature can be used to maximize transceiver efficiency while minimizing resources consumed. Larger platforms such as vehicles or relay spacecraft may provide more resources but may also be expected to perform more complex functions or support multiple and simultaneous communication links to a diverse set of assets.

This solicitation seeks advancements in reconfigurable transceiver and associated component technology. The goal of the subtopic is to provide flexible, reconfigurable communications capability while minimizing on-board resources and cost. Topics of interest include the development of software defined radios or radio subsystems which demonstrate reconfigurability, flexibility, reduced power consumption of digital signal processing systems, increased performance and bandwidth, reduced software qualification cost, and error detection and mitigation technologies. Complex reconfigurable systems will provide multiple channel and multiple and simultaneous waveforms. Areas of interest to develop and/or demonstrate are as follows:

- Advancements in bandwidth capacity, reduced resource consumption, or adherence to the Space Telecommunications Radio System (STRS) standard and open hardware and software interfaces. Techniques should include fault tolerant, reliable software execution, reprogrammable digital signal processing devices.
- Reconfigurable software and firmware which provide access control, authentication, and data integrity checks of the reconfiguration process including partial reconfiguration which allows simultaneous operation and upload of new waveforms or functions.
- Operator or automated reconfiguration or waveform load detection failure and the ability to provide access back to a known, reliable operational state. An automated restore capability ensures the system can revert to a baseline configuration, thereby avoiding permanent communications loss do to an errant reconfiguration process or logic upset.
- Dynamic or distributed on-board processing architectures to provide reconfigurability and processing capacity. For example, demonstrate technologies to enable a common processing system capacity for communications, science, and health monitoring.
- Adaptive modulation and waveform recognition techniques are desired to enable transceivers to exchange waveforms with other assets automatically or through ground control.
- Low overhead, low complexity hardware and software architectures to enable hardware or software component or design reuse (e.g., software portability) that demonstrates cost or time savings. Emphasis should be on the application of open standards architecture to facilitate interoperability among different vendors to minimize the operational impact of upgrading hardware and software components.
- Software tools or tool chain methodologies to enable both design and software modeling and code reuse and advancements in optimized code generation for digital signal processing systems.
- The use of reconfigurable logic devices in software defined radios is expected to increase in the future to provide reconfigurability and on-orbit flexibility for waveforms and applications. As the densities of these devices continue to increase and feature size decreases, the susceptibility of the electronics to single event effects also increases. Novel approaches to mitigate single event effects in reconfigurable logic caused by charged particles are sought to improve reliability. New methods should show advancements in reduced cost, power consumption or complexity compared to traditional approaches (i.e., voting schemes and constant updates (i.e., scrubbing)).
- Techniques and implementations to provide a core capability within the software defined radio in the event of failure or disruption of the primary waveform and/or system hardware. Communication loss should be detected and core capability (e.g., “gold” waveform code) automatically executed to provide access control and restore operation.
- Innovative solutions to software defined radio implementations that reduce power consumption and mass. Solutions should enable future hardware scalability among different mission classes (e.g., low rate deep space to moderate or high rate near planetary, or relay spacecraft) and should promote modularity and common, open interfaces.
- In component technology, advancements in analog-to-digital converters or digital-to-analog converters to increase sampling and resolution capabilities, novel techniques to increase memory densities, and advancements in processing and reconfigurable logic technology each reducing power consumption and improving performance in harsh environments.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.
The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

Sub Topics:

Miniaturized Digital EVA Radio Topic O1.04

Lunar outpost surface operations pose unique challenges that demand a compact, power-efficient, and adaptive S-band EVA digital radio with built-in navigation capability. High-performance criteria, tight power constraints, and multi-mode functionality are making mobile terminals increasingly complex. Therefore, NASA needs to advance next-generation digital radio technologies to meet the stringent demands of ultra low power, high reliability, and small form factor. More than a conventional system, the EVA radio infrastructure supports relative navigation, high resolution image processing, voice encoding, networked based IP communications, and dynamic quality of service. By leveraging RF micro-electromechanical system (MEM) components, intelligent middleware, and location aided networking, this solicitation aims to reach TRL 5 by 2012 with breakthrough radio metrics- less than four watts of total power consumption and cell-phone sized form factor.

Operating at 2.4-2.483 GHz (S-band), the digital radio must support multiple bandwidth and data transmissions of voice, telemetry, and video- standard as well as high definition- to fixed and mobile assets, including lunar base station, landers, habitat, rovers, and other astronauts.

To extend battery life, the EVA digital radio must incorporate middleware that optimizes power needed to maintain link quality. Under harsh lunar environmental conditions, the cognitive middleware must optimally match the QoS requirement, the channel condition, and the interference environment as well as select the mode with the least energy profile for power efficiency. As a result, this EVA radio must dynamically and adaptively conserve power on a packet-by-packet basis.

During contingency mode, EVA digital radio will transmit voice and data in half-duplex mode. With novel wireless communication network concepts, the offeror should propose solutions to enable position determination and relative navigation out to a distance of 10km with accuracy of 100 meters (3 sigma).

The Phase 1 effort defines an ultra low-power, high-performance, compact digital radio that incorporates innovative components and novel approaches to meet the above requirements for a single fault tolerant architecture. To achieve dramatic reductions in power and volume, solutions must exploit MEMS for cell phones and handheld (e.g., MEM filters, tunable matching elements, etc.) and other advanced analog/digital components, advanced digital signal processing, as well as next-generation processing elements such as FPGAs and multi-core processors.

Moreover, one must select a promising modular candidate architecture for the above requirements, exploiting emerging commercial wireless network technologies such as WLAN and WWAN. This encompasses identifying transceiver hardware, firmware, and all platform integration issues.

For this solicitation, one can assume EVA digital radio will be part of a mobile ad hoc network infrastructure that is self-configuring, self-discovering, and self-healing. Where all nodes can act as routers for other low power mobile nodes and network coverage has no limit for wireless communications. In other words, the diameter of the network can be increased by adding more nodes.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Phase 1 Deliverables:

Conduct design tradeoffs between power, performance, and flexibility. Estimate mass, volume, power, max/min range, and data rates for dynamic quality of service (voice, telemetry, video) standard and high definition TV at S-band (2.4 - 2.483 GHz), backed with analyses including lunar propagation effects and comprehensive simulations.
to ensure achievable performance and power goals. Consider IP voice as an optional feature.

As a prerequisite to Phase 2, one must select a promising architecture that balances ultra low power, mass, size, performance, functionality, and reliability. In fact, the offeror must demonstrate the ability to achieve significant advantages in compactness over a non-MEMS approach and address power efficiency and reliability. Special interests include single-chip design/packaging and integrated circuit-level implementation of RF MEMS.

Propose a preliminary design approach for the next-generation digital EVA radio, leveraging commercial multimedia cellular and WLAN technology. Operating at S-band (2.4- 2.483 GHz), MEM filters should be considered to achieve low power consumption and compact, cell-phone sized form factor. Determine the suitability and usage of ultra low power digital devices, compact RF systems, and novel configurations when recommending candidate architectures.

For the middleware, conduct trade-offs and identify the set of required parameters for the ideal radio. Quantify performance in terms of energy savings and the ability to maximize connectivity and throughput in an ad hoc network.

Develop communications and 3D navigation tracking ad hoc network concepts and algorithms that validate the feasibility of the approach. Without GPS, integrated low-power communication and navigation surface assets must track, locate, and identify tagging assets with multiple routes over an operational range of 10 km, even if astronauts descend into craters. Assume the availability of digital terrain maps. Consider low-power approaches that exploit bread crumbs, active/passive RFID systems for ID, position, sensing, etc and expand investigation to modulated retroreflectors based upon MEMS technology or solar-powered beacons.

Simulate the performance of a robust integrated communications and navigation network architecture and conduct preliminary sensitivity analysis for parameterization of the selected implementation strategy. Specifically, describe the division of functionalities between the various components (fixed and mobile) as well as segments (inter-vehicle and mobile-to-fixed node on planetary surface as well as surface-to-orbit (lunar relay satellites).

Phase 2 Deliverables:

Demonstrate RF performance and total power consumption of less than four watts, delivering voice, telemetry, and standard and high-definition video motion imagery at 2.4- 2.483 GHz (S-band). Within power budget allocation, verify performance and reliability for multiple bandwidth and data transmissions of telemetry, voice, and high-rate video.

Develop a reliable, intelligent, and power-efficient EVA digital radio prototype unit and demonstrate robust power management and optimization feasibility of the Phase 2 middleware and ad hoc network approach.

Explore radiometric tracking techniques and benefits from location-aided networking to support (limited) relative navigation using an ad hoc network infrastructure during EVA walkback. Moreover, a simulation capability must demonstrate node discovery, location awareness, and route re-configurability as nodes enter and leave the network. Testing will be conducted at an approved site and should comprise of a variety of nodes (fixed and mobile) as well as a suite of applications (non-real time data as well as real-time voice and video).

Develop and demonstrate a working ad hoc network prototype that allows characterization of the following metrics in a static deployment: a) network range, b) aggregate throughput and throughput per user, and c) node and network lifetime.

Deliver open middleware and supporting IP solutions.

Where costs preclude full implementation of all component technologies, provide analysis to extrapolate the performance of a complete design.

Commercial Potential:

Adaptive radios potentially offer significant cost savings to a wide spectrum of commercial markets including telecommunications and consumer electronics. They also provide for enhanced interoperability and spectrum reuse for Homeland Security applications. New component technologies and radio infrastructures are needed to extend
the programmable capabilities into long battery life handsets.

Sub Topics:
Communication for Space-Based Range Topic O1.05
Space-Based Telemetry Transceivers may replace Line-of-Sight (LOS) and RADAR based Tracking, Telemetry, and Command (TT&C) flight and ground systems for sub-orbital platforms and orbit-insertion launch vehicles. In order to do so, the transceivers must be capable of providing real-time or near real-time return (data) and forward (command) links of varying bandwidths with industry accepted Quality of Service (QoS) levels. Some applications require the coupling of embedded GPS receivers and attitude determination units, while others require high bandwidth links with common interfaces (i.e., Ethernet). In all cases it is desired to utilize an existing commercial satellite provider with fee-for-service to reduce operating and overhead expenses.

Note: The proposer should be aware of subtopic O4.01, which seeks advancements in GPS metric tracking. This proposal primarily focuses on space-based transceivers. However, advancements made under O4.01 could be incorporated with space-based transceivers in the future.

Purpose
The vision of Space-Based Range architecture is to assure public safety, reduce the costs of launch operations, enable multiple simultaneous launch operations, decrease response time, and improve geographic and temporal flexibility. It is desired to reduce or eliminate the need for redundant range assets and deployed down-range assets that are currently used to provide for LOS TT&C with sub-orbital platforms and orbit-insertion launch vehicles. This solicitation seeks to achieve this by focusing on specific needed advancements in TT&C.

There are varying applications for space-based transceivers, each necessitating a different set of requirements. Low data rate and very low cost transceivers coupled with highly accurate GPS receivers may be used to measure wind velocities to determine flight conditions and accurate trajectory predictions. These could also be used to track low risk payload or vehicle components for recovery purposes. Higher dynamic vehicles require a more robust transceiver with embedded position and attitude determination units to track vehicle trajectories through space insertion or for recovery purposes. High data rate transceivers with a commonly used interface could be used across multiple platforms for primary or redundant data dispersion and command control.

The proposer should address one of the following three need areas below:

Low Cost and Low SWAP Transceiver with Integrated GPS Receiver
Core Capabilities should include:

- Utilize existing commercial satellite provider with fee for service. Limit the user burden to provide adequate effective isotropic radiated power (EIRP) for providing acceptable link margins.
- Low Cost: several hundred dollars or less (throw-away).
- Low size, weight, and power (SWAP): 10 cubic inches or less, weigh less than 0.25 lbs, consume less than 1W (on avg).
- Ability to operate up to +/- 70 deg latitude (all latitudes preferred).
- Ability to sample time, position (x, y, z), and velocity (x., y., z.) solutions at a min of 10Hz.
- Ability to downlink the 10Hz or better sampled data with low latency (several seconds or better) and little to no loss (not to include ground infrastructure latency, i.e., internet latency).
- Ability to receive data and send commands from one location anywhere in the world via IP. However, an RF link could be used as a backup for remote locations.
- Ability to accept near real-time commands (latency of several seconds or better) and provide firmware level actions/responses (e.g.: to select alternate downlink data format).
- Highly accurate GPS solutions. Commercial-off-the-Shelf (COTS) embedded units may be utilized but repackaging may be needed to provide a single, integrated Over-the-Horizon (OTH) tracker. Independent Kalman Filtering techniques may need to be developed. Velocity jitter is highly undesirable. The ability to lift altitude and velocity (COCOM) restrictions is needed.
Environmental considerations: Operability from sea level to 160,000 ft with operating temperatures of -20°C to +60°C. Vehicle dynamics are relatively benign. Duration of mission operation is several hours.

Ground Software to view the telemetered data.

Optional Capabilities: The ability to operate at all latitudes. The ability to interface a small number of sensors (TTL, Analog-to-Digital, and/or serial interfaces) for sampling and transmit. Operating temperatures of -40°C to +85°C. The ability to allow uplink commands to change the state of on-board TTL level outputs. Ability to receive data and send commands from multiple locations via IP. Open source or factory customizable firmware.

Highly Dynamic Transceiver with Integrated GPS Receiver and Attitude Determination

Core Capabilities should include:

- Utilize existing commercial satellite provider with fee for service. Limit the user burden to provide adequate EIRP for providing acceptable link margins.
- Low cost, size and weight commensurate with materials and techniques used. Power consumption less than 5W (on avg).
- Ability to operate up to +/- 70 deg latitude (all latitudes preferred).
- Ability to sample time, position (x, y, z), velocity (x., y., z.), and vehicle dynamics (accelerations, pitch, and roll) at a min of 20Hz.
- Ability to downlink the 20Hz or better sampled data with very low latency (preferably sub-second) and little to no loss (not to include internet latency).
- Ability to accept commands on a real-time basis (preferably sub-second latency) and provide firmware level responses to those commands.
- Ability to receive data and send commands from one location anywhere in the world via IP. However, an RF link could be used as a backup for remote locations.
- Highly accurate integrated position and solid-state attitude solutions. COTS units may be utilized but repackaging may be needed to provide a single integrated OTH tracker. The ability to lift altitude and velocity (COCOM) restrictions is needed.
- Environmental considerations: Operability from sea level up to space insertion is desired (note that radiation hardening is not required). Operating temperatures of -20°C to +60°C are needed. Ability to operate on spin stabilized rockets (up to 7 rps), under sudden acceleration, and under high jerk environments (e.g., launch conditions and separation / jettison events). Duration of mission operation is several hours.
- Ground Software to view the telemetered data.

Optional Capabilities: The ability to operate at all latitudes. The ability to interface a small number of sensors (TTL, A to D, and/or serial interfaces) for sampling and transmit. Operating temperatures of -40°C to +85°C. The ability to allow uplink commands to change the state of on-board TTL level outputs. Ability to receive data and send commands from multiple locations via IP. Open source or factory customizable firmware.

High Data Rate Transceiver

Core Capabilities should include:

- Utilize existing commercial satellite provider with fee for service. Limit the user burden to provide adequate EIRP for providing acceptable link margins.
- Cost and SWAP commensurate with performance, but all should be kept minimal.
- Ability to operate up to +/- 70 deg latitude (all latitudes preferred).
- The minimum return bandwidth (data) is 50 kbps but several hundred kbps is desired. The minimum forward bandwidth (command) is 1 kbps but several kbps is desired.
- Ability to downlink data with very low latency (preferably sub-second) and little to no loss (not to include ground infrastructure latency, i.e., internet latency).
- Ability to receive commands with very low latency (preferably sub-second) and little to no loss from an IP based ground terminal.
- Ability to receive data and send commands from one location anywhere in the world via IP. However, an RF link could be used as a backup for remote locations.
- The transceiver I/O interface should allow for easy interfacing to multiple platforms. An Ethernet interface is
preferred, but lower data rates may allow for an asynchronous serial interface. Depending on the satellite platform chosen, the proposer may have to provide internal buffering and clocking mechanisms to smooth an asynchronous input for proper ground receipt.

- **Environmental considerations:** Operability from sea level up to space insertion is desired (note that radiation hardening is not required). Operating temperatures of -20°C to +60°C are needed. The initial prototype could be tested on low dynamics vehicles, thereby concentrating the focus on performance. However, the ultimate goal is the ability to operate on spin stabilized rockets (up to 7 rps), under sudden acceleration, and under high jerk environments (e.g., launch conditions and separation/jettison events). Duration of mission operation is several minutes to several months.
- **Ground Software** to view the telemetered data.

Optional Capabilities: The ability to operate at all latitudes. Operating temperatures of -40°C to +85°C. Ability to receive data at multiple locations simultaneously via IP. Open source or factory customizable firmware.

In all cases, research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

Sub Topics:

Long Range Optical Telecommunications Topic O1.06

This subtopic seeks innovative technologies for long range Optical Telecommunications supporting the needs of space missions. Proposals are sought in the following areas:

- Systems and technologies relating to acquisition, tracking and sub-microradian pointing of the optical communications beam under typical deep-space ranges (to 40 AU) and spacecraft micro-vibration environments.
- Small lightweight (< 1-Kg), 2-axis gimbals with < 30-?rad rms error and blind-pointing accuracy of < 35-?rad. Must be able to actuate payload mass of approximately 6-Kg at rates up to 5 deg/sec. Assume that the payload is shaped as an 8-cm diameter cylinder, 30-cm long, with uniformly distributed mass. Proposals should come up with innovative pragmatic designs that can be flown in space.
- Light-weighted afocal optical telescopes with diameters varying from 10-50-cm diameter with an average areal density of < 45 Kg/m2 (Areal density is average over large and small optics used to gather and focus light on to sensors/detectors). The telescopes should be capable of operating in the near-infrared spectral range (1.0 – 1.6 micrometers) with less than a tenth wave root-sum squared wavefront error.
- Uncooled photon counting imagers with >1024 x 1024 formats, ultra low dark count rates and 400 - 2000 nm sensitivity.
- Ultra-low (<0.1%) fixed pattern non-uniformity NIR imagers with large format (1024 x 1024), low noise (<1 e- read, <1ke/pix/sec dark) and high QE (>0.7).
- Nutating fiber pointing mechanisms with high precision (<0.01 urad) and high bandwidth (> 3 kHz).
- Compact, lightweight, low power, broad bandwidth (0 - 3 kHz) disturbance rejection and/or isolation platforms.
- Space-qualifiable, > 20% wall plug efficiency, lightweight, 20-500 psec pulse-width (10 to > 100 MHz PRF), tunable (± 0.1 nm) pulsed 1064-nm or 1550-nm laser transmitter fiber MOPA sources with >1 kW of peak power per pulse (over the entire pulse-repetition rate), with Stimulated Brillouin Scattering (SBS) suppression and > 10 W of average power, near transform limited spectral width, and <10 psec pulse rise and fall times. Also of interest for the laser transmitter are: robust and compact packaging with radiation tolerant electronics inherent in the design, and high speed electrical interface to support output of pulse position modulation encoding of sub nanosecond pulses and inputs such as Spacewire, Firewire or Gigabit.
Ethernet.

Description of approaches to achieve the stated efficiency is a must.

- > 2-m diameter, <30-nm bandpass optical filters on a membrane substrate to pass center. Wavelengths in the 1000 to 1600 nm band with >90% transmission.
- > 2-m diameter f/1.1 primary mirror and Cassegrain focus of ~f/6 optical communication receiver telescopes. Maximum RMS surface figure error of 1-wave at 1000 nm wavelength. Telescope is positioned with a 2-axis gimbal capable of 0.25 mrad pointing. Combined telescope and gimbal shall be manufacturable in quantity (tens) for <$400k each.
- Daytime atmospheric compensation techniques capable of removing all significant atmospheric turbulence distortions (tilt and higher-order components) on an uplink laser beam; and/or for a 2-m diameter downlink receiver telescope. Also of interest are technologies to compensate for the static and dynamic (gravity sag and thermal) aberrations of 2-m diameter telescopes with a surface figure of 10’s of waves.
- Ground-based, relatively low-cost diode-pumped laser technology capable of reaching 100 kW average power levels in a TEM00 mode, for uplink to spacecraft.
- Photon counting Si, InGaAs, and HgCdTe detectors and arrays for the 1000 to 1600 nm wavelength range with single photon detection efficiencies > 60% and output jitters less than 20 psec, active areas > 20 microns/pixel, and 1 dB saturation rates of at least 100 megaphotons (detected) per pixel and dark count rates of < 1 MHz / mm².
- Radiation hard (100 Mrad level) photon counting detectors and arrays for the 1000 to 1600 nm wavelength range with single photon detection efficiencies > 40% and 1 dB saturation rates of at least 30 megaphotons/pixel and operational temperatures above 220 K and dark count rates of < 10 MHz / nm.
- Single-photon-sensitive, high-bandwidth (1 GHz), linear mode, high gain (> 1000), low-noise (< 1 kcps), large diameter (200 micron), HgCdTe avalanche photodiode and/or (small diameter) arrays for optical detection at 1060 nm or 1550 nm.

Research should be conducted to convincingly prove technical feasibility during Phase 1, with clear pathways to demonstrating and delivering functional hardware, meeting all objectives and specifications, in Phase 2.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

Sub Topics:
Long Range Space RF Telecommunications Topic O1.07
This solicitation seeks to develop innovative technologies for long-range RF telecommunications supporting the needs of space missions.

Purpose (based on NASA needs) and current state-of-the-art: Future spacecraft with increasingly capable instruments producing large quantities of data will be visiting the Moon and the planets. To support the communication needs of these missions and maximize the data return to Earth innovative telecommunications technologies that maximize power efficiency, transmitted power density and data rate, while minimizing size, mass and power are required.

The current state-of-the-art in long-range RF communications is about 2 Mbps from Mars using microwave communications systems (X-Band and Ka-Band) with output power levels in the low tens of Watts end DC-to-RF efficiencies in the range of 10-25%.

Specifications and Requirements:

- Ultra-small, light-weight, low-cost, low-power, modular deep-space transceivers, transponders, and components, incorporating MMICs and Bi-CMOS circuits;
- MMIC modulators with drivers to provide large linear phase modulation (above 2.5 rad), high-data rate (10 - 200 Mbps), BPSK/QPSK modulation at X-band (8.4 GHz), and Ka-band (26 GHz, 32 GHz and 38 GHz);
- High-efficiency (> 60%) Solid-State Power Amplifiers (SSPAs), of both medium output power (10 W - 50 W) and high-output power (150 W - 1 KW), using power combining techniques and/or wide band-gap
semiconductor devices at X-band (8.4 GHz) and Ka-band (26 GHz, 32 GHz and 38 GHz);
- Epitaxial GaN films with threading dislocations less than 106 per cm2 for use in wide band-gap semiconductor devices at X- and Ka-Band;
- Utilization of nano-materials and/or other novel materials and techniques for improving the power efficiency or reducing the cost of reliable vacuum electronics amplifier components (e.g., TWTAs and Klystrons);
- SSPAs, modulators and MMICs for 26 GHz Ka-band (lunar communication);
- TWTAs operating at millimeter wave frequencies (e.g., W-Band) and at data rates of 10 Gbps or higher;
- Ultra low-noise amplifiers (MMICs or hybrid) for RF front-ends (< 50 K noise temperature); and
- MEMS-based RF switches and photonic control devices needed for use in reconfigurable antennas, phase shifters, amplifiers, oscillators, and in-flight reconfigurable filters. Frequencies of interest include VHF, UHF, L-, S-, X-, Ka-, V-band (60 GHz) and W-band (94 GHz). Of particular interest is Ka-band from 25.5 - 27 GHz and 31.5 - 34 GHz.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Phase 1 Deliverables: Feasibility study, including simulations and measurements, proving the proposed approach to develop a given product. Verification matrix of measurements to be performed at the end of Phase 2, along with specific quantitative pass-fail ranges for each quantity listed.

Phase 2 Deliverables: Working engineering model of proposed product, along with full report of on development and measurements, including populated verification matrix from Phase 1.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

Sub Topics:

Lunar Surface Communication Networks and Orbit Access Links Topic O1.08

This solicitation seeks to develop a highly robust, bidirectional, and disruption-tolerant communications network for the lunar surface and lunar orbital access links. Exploration of lunar and planetary surfaces will require short-range (~1.6 km line-of sight, ~5.6 km non-line-of-sight) bi-directional, and robust multiple point links to provide on-demand, disruption and delay-tolerant, and autonomous interconnection among surface-based assets. Some of the nodes will be fixed, such as base stations and relays to orbital assets, and some transportable, such as rovers and humans. The ability to meet the demanding environment presented by lunar and planetary surfaces will encompass the development and integration of a number of communication and networking technologies and protocols. NASA lunar surface networks will be dynamic in nature, and required to deliver multiple data flows with different priorities (operational voice, command/control, telemetry, various qualities of video flows, and others). Bandwidth and power efficient approaches to mobile ad hoc networks are desired. Quality of Service (QoS) algorithms in a Mobile Ad hoc NETwork (MANET) setting will need to be developed and tailored to NASA mission specific needs and for the lunar surface environment.

These lunar and planetary surface networks will need to seamlessly interface with communications access terminals and orbiting relays that also can provide autonomous connectivity to Earth based assets. The access link communications system will encompass the development and integration of a number of communications and networking technologies and protocols to meet the stringent demands of continuous interoperable communications. Human exploration, therefore, requires the development of innovative communication protocols that exploit persistent storage on mobile and stationary nodes to ensure timely and reliable delivery of data even when no stable end-to-end paths exist. Solutions must exploit stability when it exists to nearly approximate the performance of conventional MANET protocols. The lunar surface communications network must support 15 simultaneous users with aggregate bandwidth of 80 Mbps. It must also support minimum data rates of 16 kbps and maximum data rates of 20 Mbps and be IP compatible with a BER of 10e-8 or less, and graceful degradation. Frequency bands of interest are UHF (401 - 402 MHz, 25 kHz bandwidth), S-band (2.4 - 2.483 GHz), and Ka-band (22.55 - 23.55 GHz).
Core capabilities:

- Short range access point, base stations, and wireless router bridges for extending surface network coverage;
- Non-line-of-sight communication between stationary and moving assets, outside or inside lunar craters without using orbiting assets;
- Analog voice-only radio service to the lunar outpost and the lunar relay satellite at the highest network priority for HF, UHF, or S-band for reliability;
- Support multiple bandwidths for telemetry, voice, and high-rate video;
- Ability to determine the QoS, channel, and interference information;
- Autonomously reconfigurable receivers capable of automatic link configuration and management;

Proposals should address the following areas:

- Disruptive and delay-tolerant networking (DTN);
- Networking algorithms and adaptive routing;
- Extra-Vehicular Activity (EVA) radio.

The following technologies are addressed under other SBIR Subtopic solicitations:

- Antennas for surface and orbital access communications required for the aforementioned goals shall be developed under subtopic O1.02;
- Radios for surface and orbital communications required for the aforementioned goals shall be developed under subtopic O1.03;
- Optical transceivers required for the aforementioned goals shall be developed under subtopic O1.06;
- Any high rate, low power, efficient amplifiers or transponders required for the aforementioned goals shall be developed under subtopic O1.07.

Development Timeline: After a possible Phase 3 development activity, these technologies are expected to ready for insertion at TRL 6 by 2014. To meet the schedule for NASA's Vision for Space Exploration (VSE), a TRL progression from an entry TRL of 1-2 for Phase 1 in January 2009 followed by an exit TRL of 3 - 4 after Phase 2 is required.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Phase 1 Deliverables:

Propose a robust lunar surface and orbit access communications network suitable for the applications and environment. Address all technical challenges, pitfalls, and tradeoffs of the network size, assets, and power as well as reliability, complexity, and performance. Solutions should encompass a notional architecture, functional requirements, and building block concepts, demonstrating a reliable and simultaneous voice, telemetry, and video transmission as well as reconfigurability across multiple applications and frequency bands.

Develop suitable communication algorithms capable of demonstrating the feasibility of the approach. Based on a minimum of three (3) nodes, simulate the performance of the proposed integrated communications network architecture and analyze the selected implementation strategy. Identify required parameters for the network architecture and quantify performance in terms of energy savings, connectivity, and throughput in a mobile ad hoc network.

Phase 2 Deliverables:

Develop a communications network with multi-functional capabilities described in above. Further enhance the concepts investigated in Phase 1 and demonstrate the feasibility of the approach on an actual platform.
Fabricate and test a prototype communications network with a minimum of three (3) nodes using an active integrated communication network. Simulate and refine power software algorithms for real-time robust operations and characterize system performance in compliance with the design goals outlined in Phase 1.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.

Sub Topics:

Software for Space Communications Infrastructure Operations Topic O1.09

New technology is sought to improve resource optimization and the user interface of planning and scheduling tools for NASA's Space Communications Infrastructure. The software created should have a commercialization approach with the new modules fitting into an existing or in development planning and scheduling tool.

Purpose (based on NASA needs) and the current state of the art: The current infrastructure for NASA Space Communications provides services for near-Earth spacecraft and deep space planetary missions. The infrastructure assets include the Deep Space Network (DSN), the Ground Network (GN), and the Space Network (SN). Recent planning for the Vision for Space Exploration (VSE) for human exploration to the Moon and beyond as well as maintaining vibrant space and Earth science programs resulted in a new concept of the communications architecture. The future communications architecture will evolve from the present legacy assets and with addition of new assets.

NASA seeks automation technologies that will facilitate scheduling of oversubscribed communications resources to support: (1) Increased numbers of missions and customers; (2) Increased number and complexity of constraints (as required by new antenna types); and (3) decreased operations budgets (both core communications network operations and mission side operations budgets).

Core Capabilities:

Intelligent Assistants

In order to automate the user's provision of requirements and refinement of the schedule, "intelligent assistant" software should manage the user interface. Assistants should streamline access and modification of requirement and schedule information. By modeling the user, this software can adjust the level of autonomy enabling decisions to be made by the user or the automated system. Assistants should try to minimize user involvement without making decisions the user would prefer to make. The assistants should adapt to the user by learning their control preferences. This technology should apply to local/centralized and collaborative scheduling.

In a conflict-aware scheduling system (especially in a collaborative scheduling environment), conflicts are prevalent. With the concept of one big schedule from the beginning of time, real time, to the end of time, resolving conflicts become a difficult task especially since resolving conflicts in a local sense may affect the global schedule. Therefore, an intelligent assistant may provide decision support to the system or the users to assist conflict resolution. This may involve a set of rules combining with certain local/global optimization to generate a list of options for the system or users to choose from.

Resource Optimization

The goal of schedule optimization is to produce allocations that yield the best objectives. These may include maximizing DSN utilization, minimizing loss of desired tracking time, and optimizing project satisfaction. Each project may have their own definition of satisfaction such as maximal science data returned, maximal tracking time, best allocation of the day/week, etc. The difficulty is that we may not satisfy all of these objectives during the optimization process. Obviously, optimal solution for one objective may produce worse results for the other
objectives. One possible solution is to map all of these objectives to an overall system goal. This mapping is normally non-linear. Technology needs to be developed for this non-linear mapping for scoring in addition to regular optimization approaches.

Optional Capabilities:

Multiple Agents

In an environment where all system variables can be controlled by a single controller, an optimal solution for the objective function can be achieved by finding the right set of variables. In a collaborative environment with multiple decision makers where each decision maker can only control a subset of the variables, modeling and optimization become a very complex issue. In the proposed collaborative scheduling approach, there are many users/agents that will control their own allocations with interaction with the others. How we model their interactions and define system policy so the interaction can achieve the overall system goal is an important topic. The approach for multiple decision-maker collaboration has been studied in the area of Game Theory. The applications cover many areas including economics and engineering. The major solutions include Pareto, Nash, and Stackelberg. There are many new research areas including incentive control, collaborative control, Ordinal Games, etc. Note that intelligent assistants and multiple agents represent different points on the spectrum of automation. Current operations utilize primarily manual collaborative scheduling, intelligent assistants would enhance users ability to participate in this process and intelligent agents could more automate individual customers scheduling. Ideally, proposed intelligent assistants and distributed agents would also be able to represent customers who do not wish to expose their general preferences and constraints.

A start for reference material on this subtopic may be found at the following:

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract

Phase 1 Deliverables: Propose demonstration of Intelligent Assistants, Resource Optimization, or Multiple Agents on a number of communication asset allocation problem sets (involving dozens of missions, communications assets, and operational constraints). End Phase deliverable would include a detailed rationale for ROI in usage of said technology to communications asset allocation based on knowledge of current and future operations flows.

Phase 2 Deliverables: Demonstrate Intelligent Assistants, Resource Optimization, or Multiple Agents on actual or surrogate communication asset scheduling datasets. Deliverables would include use cases and some evidence of utility of deployment of developed technology.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.
Sub Topics:
Automated Collection and Transfer of Launch Range Surveillance/Intrusion Data Topic O2.01

NASA is seeking innovative technologies for sensors and instrumentation technologies which expedite range
clearance by providing real-time situational awareness for safe Range operations from processing to launch and
recovery. These sensors and instruments are expected to operate, as a payload, on mobile or deployable
Unmanned Aerial Systems (UAS), High Altitude Airships (HAA), buoys, etc.

Purpose: NASA is embarking on a new era of space exploration with new launch vehicles and demands for
availability to support launch times within hours of one another to ensure mission success. This availability
requirement is allocated across the entire launch operations which includes the Range that provides clear corridor
of land, air and sea for the vehicles to transit through, as they ascent or return. The current Range infrastructure is
aging, labor intensive and independent, and would benefit from new sensors and instrumentation that improve the
situational awareness to those that are responsible for ensuring public safety, mission assurance and efficient
operations.

To aid in this situational awareness the new sensors and instrumentation must be able to operate in the
environment that takes advantage of mobile or deployable Unmanned Aerial Systems (UAS), High Altitude Airships
(HAA), buoys, etc. Use of these vehicles as a platform is intended to increase the Ranges availability while
reducing the cost of operations. Size, power, weight and stability of these systems, that operate on these platforms,
will be a major constraint their use.

These sensors and instrumentation provide for the remote detection, recognition, and identification of persons and
objects that have intruded into areas of the range that must be cleared in order to conduct safe launch operations.
This would include a wide spectrum of optical, infrared, Radio Frequency (RF), and millimeter wave sensors for this
purpose. In order to achieve accurate identification, time and position of intruding entities multiple sensors and
instruments may be used, or combined through the use of neural networks and data fusion techniques. This will
require the use of standards for communications, so that, data from individual sensors or instruments can be
combined on a platform and processed on-board, or communicated to central location where a fused solution is
processed.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a
Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA
testing at the completion of the Phase 2 contract.

Sub Topics:
Ground Test Facility Instrumentation Topic O2.02

Ground testing of propulsion systems continues to be critical in meeting NASA’s strategic goals. Advanced ground
testing technologies and capabilities are crucial to the development, qualification, and flight certification of rockets
engines. The ability to quickly and efficiently perform ground system certification greatly impacts all space
programs. Proposals are sought in the following areas:

Instrumentation and Smart Sensors

Innovative network enabled sensors/instruments capable of providing data, a measure of the quality of the data,
and a measure of their health are needed. Sensors may be wired or wireless. Smart instruments/sensors that
enable improved rocket test operations must provide many of the following characteristics: simplify and standardize
the configuration and maintenance of sensor systems; reduce integration time and errors; expedite fault
identification, isolation, assessment, and recovery; facilitate reuse; contribute to improved system integration,
decrease cabling mass; decrease costs associated with cable/connector fabrication; distribute computing
resources; improve reliability and availability; reduce mean-time to recovery after a failure.

Current challenges include: computational power within the sensor to extract features of interest; full
implementation of IEEE 1451 family of Smart Sensors and Actuators Standards (plug & play functionality); miniaturization; ease of adding/modifying software for continued evolution of the “smart/intelligent” capabilities.

Integrated Failure Detection, Isolation, and Recovery (IFDIR)

Innovative technologies are needed to enable implementation of affordable, modular, and evolvable IFDIR, including architectures, taxonomies, and ontologies; standards for interoperability; integration software environments; algorithms, approaches, and strategies for anomaly detection, diagnosis, prognosis; user interfaces for integrated awareness of system health and readiness for operations. IFDR must be achieved in the context of comprehensive and continuous vigilance.

Major challenges include software environments for integration, adherence to standards for interoperability, and validated algorithms/approaches/strategies for anomaly detection.

Sub Topics:

Crew Health and Safety Including Medical Operations Topic O3.01

Determining the probability of certain types of events (such as medical conditions) can be tricky. Often there is not enough space-flight data to make a good determination and so other types of evidence are used such as expert opinion, analog data, controlled studies, etc. Each source of evidence must be documented (e.g., as a publication citation, or as a data pull against some data source along with the query parameters used). The source is also characterized as to its “level of evidence” using the Cochrane methodology as documented in the National Guideline Clearinghouse (http://www.guideline.gov/summary/summary.aspx?doc_id4913 [6]). There are many methods for combining these evidence pieces. A software system is sought that can be used to collect the evidence (references to evidence sources such as journal publications, population statistics, analog study, etc.) and which facilitates the evidence level assignment (providing a place to record the evidence level and definitions of each level). Furthermore the system should provide a model for combining these evidence sources in a principled manner that characterizes the certainty of the conclusion reached, e.g., a weighted equation where the weights may be adjusted by the users of the system.

Relevance: Evidence of events drives risk assessment. Depending on the risks identified, decisions can be made as to whether to mitigate the risk via pre-flight activities or in-flight capabilities. Such a system supports “what would happen if” type reasoning that enables exploration of different mission options.

Challenge Addressed: Capturing the evidence base in one place along with additional categorization (level of evidence, uncertainty, quality of evidence, etc.) is invaluable in preserving decision-making rationale such that the decisions can be revisited if additional evidence/information is added later. Determining where to spend limited resources wisely is supported – e.g., balance funding between development of pre-flight mitigation strategies, in-flight capability development, investigation of knowledge gaps (uncertainties), and risk acceptance decisions.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Sub Topics:

Human interface systems and technologies for spacesuits Topic O3.02
The primary medium for sending and receiving information from a crewmember is two-way voice communications. The function of the voice communications system may be extended to include data entry through the inclusion of an Automatic Speech Recognition (ASR) system. Recent developments in ASR have led to systems that are capable of connected word identification or speaker-independent word identification. These systems rely on very high fidelity audio link to the talker’s speech.

While speech recognition technology has enjoyed significant advances in recent decades, alternate technologies for data entry exist. Such systems may enjoy advantages over speech recognition for the spacesuit application in areas such as overall Size, Weight and Power (SWaP) or system robustness.

The focus of this subtopic is on the development of systems and technologies in support of high fidelity speech and data entry for space suits. In addition to providing the necessary audio fidelity for ASR, the high fidelity audio systems also result in better voice communications for human-to-human communications. The topic therefore includes the related areas of inbound audio systems and hearing protection systems.

High Fidelity, In-Helmet Audio Systems

The space suit environment presents a unique challenge for capturing and transmitting speech communications to and from a crewmember. The in-suit acoustic environment is characterized by highly reflective surfaces, causing high levels of reverberation, as well as spacesuit-unique noise fields. Known sources of noise within the suit are both stationary and transient in nature. Noise within the suit can be acoustically borne or it can originate from structure-borne vibration. Noise originates from suit machinery, footfalls, suit arm and hip bearing, body movement noise and turbulent flow noise from devices such as oxygen spray bars and breath noise. Static pressure levels within the spacesuit can range from a small fraction of an atmosphere during Extravehicular Activity (EVA) operations to strong hyperbaric conditions that exist during terrestrial field-testing. These changes in static pressure level have significant effects on acoustic transduction. Additionally, in some spacesuits, the crewmember is afforded a wide range of motion within the torso of the suit. The wide range of motion means that the acoustic path between an crewmember’s mouth or ear and the microphone or helmet mounted speaker varies significantly with movement, resulting in decreased sound pressure levels at the microphone and/or increased interference from competing background noise sources. In addition, vehicular operations can generate high levels of noise that are not fully attenuated by the spacesuit, helmet or headsets. Due to these factors, the quality of speech delivered to and from the inside of a spacesuit helmet can be low and can have a negative effect on inbound and outbound speech intelligibility and the performance of Automatic Speech Recognition (ASR) systems.

The traditional approach to overcome the challenges of the spacesuit acoustic environment is to use a skullcap-based system of microphones and speakers. Cap-based solutions mitigate many of the acoustic problems associated with in-helmet communications systems through the very short and direct acoustic transmission paths between the crewmember and the speakers and microphones. The skullcap’s headsets and noise canceling microphones can also afford some degree of acoustic isolation for the crewmember from noise generated inside the spacesuit. Cap-based systems are less successful, however, in attenuating high noise levels generated outside the spacesuit (e.g., during launch, descent, burn activities, or emergency aborts), even when coupled with the launch/entry helmet. The use of noise canceling microphones can improve speech intelligibility, but only if the microphones are in close proximity to the crewmember’s mouth. Many logistical issues exist for head-mounted caps. Crewmembers are not able to adjust the skullcap, headset or microphone booms during EVA operations (which can last from four to eight hours) or during launch/entry operations. Interference between the protuberances of the cap and other devices such as drinking/feeding tubes is a recognized issue during EVA. Comfort, hygiene, proper positioning and dislocation are major concerns for head-mounted caps. Wire fatigue and blind mating of the connectors are also problems with the cap-based systems. In order to accommodate anthropometric variations in crew heads, multiple cap sizes are required. Issues have recently been identified with existing communications systems regarding adjustment of microphone boom lengths, proper function over the wide ranges of static pressure experienced during suited operations, flow noise over the microphone elements, and integration with advanced helmet designs.

NASA is seeking systems, subsystems and/or technologies in support of improvements in speech intelligibility, speech quality, listening quality and listening effort for in-helmet aural and vocal communications. In addition, improvements in hearing protection are sought to protect the crew during all mission phases, in case hazardous acoustic levels and conditions occur.

The specific focus of this SBIR subtopic is on improving the interface between crewmember and the acoustic
pickup (i.e., microphones) and generation (i.e., speaker) systems. Systems and devices are sought to improve or resolve acoustic, physical and technical problems (listed above) that have been associated with skullcap-mounted speakers and microphones, or allow for the elimination of skullcap-mounted speakers and microphones. In particular, voice communications systems are sought that have provided crewmembers with adequate speech intelligibility over background noise within, and external to, the spacesuit. Overall system performance must provide Mean Opinion Score (MOS) for Listening Quality (Lq) and Listening Effort (Le) of 3.9 or greater, or Articulation Index (AI) of .7 or better or 90% Speech Intelligibility (SI) in the crewmember’s native language for both inbound and outbound speech communication. Specific technologies of interest include, but are not limited to:

- Acoustic modeling of the in-suit acoustic environment, including the ability to model structure-borne vibration in helmet and suit structures as well as transduction to and from the acoustic medium.
- Low-mass, low-volume, low-distortion, space-qualified speakers with low variation in sensitivity with static pressure. Changes in speaker sensitivity should be less than 2 dB over the speech band with changes in static pressure between 3 and 18 psia.
- Low-mass, low-volume, low-distortion high-sensitivity (> 5 mV/Pa), space-qualified noise canceling microphones with low variation in sensitivity with static pressure. Changes in microphone sensitivity should be less than 2 dB over the speech band with changes in static pressure between 3 and 18 psia.
- Attenuation of external noise by passive hearing protection that is comfortable for crewmembers during extended use.
- Development of theories, experiments and analysis in support of decomposition of end-to-end SI and/or MOS requirements to the spacesuit portion of EVA-to-Mission Operations Center (MOC), EVA-to-EVA or EVA-to-habitat voice loops. Comparison of SI system fidelity metrics to MOS system fidelity metrics.

In-helmet devices will need to be compatible with high humidity, low humidity and pure oxygen environments. Devices should be able to fit a wide anthropometric range of head and physical features found within the astronaut corps.

Additionally, demonstrations of novel system concepts for in-helmet audio communication are of strong interest. A partial list of such concepts includes:

- Near-field beamforming systems;
- Optical microphone systems;
- Highly directive sound production systems such as parametric sound systems;
- Active noise cancellation systems for hearing protection;
- Bone conduction microphones.

Systems and devices must include appropriate computer processing systems. The expectation is that a working and fully functional system or device will be delivered at the end of Phase 2.

Advanced Data/Text Entry for Spacesuits

The space suit environment presents a unique and challenging environment for control of suit-mounted processing equipment. Terrestrial user-interface devices for controlling portable processing equipment such as laptop computers typically rely on keyboard or touchpad input. Such devices are problematic in the space environment since a suited crewmember must interact with the processing equipment while wearing a pressurized glove. Speech recognition technologies have been proposed and investigated to provide user input, but alternative methods are also desired.

Currently, a suit’s processing system has been primarily for providing life-support data-acquisition, monitoring, telemetry, and crewmember alerts. The traditional approach to interact with the EVA processing system is with suit-mounted toggle switches optimally sized for a gloved hand and located in the suit’s chest area. NASA envisions future generations of suits to contain advanced communication, navigation, and information processing capabilities that will require better ways of interacting with the suited crewmember. It is likely that the processing unit(s) will be installed within the suit’s backpack-mounted portable life support unit or in close proximity.

Crewmember usability and efficient operation are prime features of the next-generation input device. The device must operate robustly in the space and lunar environment and be tolerant of dust, vacuum, and radiation exposure.
During Extra-Vehicular Activity (EVA), a suited crewmember needs to achieve as high a level of mobility as possible, so a suit-mounted computer-input device must not impede the movements of the suited crewmember or unduly burden the suit system with weight, volume, or electrical power constraints.

NASA is seeking systems, subsystems and/or technologies in support of improvements in suit-mounted computer system user-interface devices. Particular interest is in areas allowing the suited crewmember to control a computer processing system and provide text input accurately, at high speed, without little or no user fatigue for purposes such as note taking or control of the computer display screen. Possible approaches include chording keyboards, suit or glove mounted fabric keyboards or touch-pads or other technologies. Other technologies will also be considered. Concepts may consider both solutions installed internally (within the pure-oxygen pressurized envelop of the suit), externally (mounted on the exterior of the suit), or a combination of the two.

Techniques for routing wires or connections between the user interface device and the computer processing unit are also of interest. Techniques for routing the wires past bearings or avoidance of such will be considered.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Systems and devices must include appropriate computer processing systems. The expectation is that a working and fully functional system or device will be delivered at the end of Phase 2.

Sub Topics:

Vehicle Integration and Ground Processing Topic O3.03
This solicitation seeks to create new and innovative technology solutions for assembly, test, integration and processing of the launch vehicle, spacecraft and payloads; end-to-end launch services; and research and development, design, construction and operation of spaceport services. The following areas are of particular interest:

Propellant Servicing Technologies Enabling Lower Life Cycle Costs

Technologies for advanced cryogenic fluid storage and transfer, servicing of chilled/densified fluids and advances in state-of-the-art ground insulation are needed to reduce launch operation costs by minimizing consumable losses. Solutions in support of helium conservation and recovery; recapture, reduction, and elimination of cryogenic propellants vented to atmosphere (zero boil-off); insulation for improved storage and distribution minimizing thermal losses; fire resistant liquid oxygen pumping systems; and instrumentation advances to enable high efficiency operations. Providing solutions with higher efficiency, lower maintenance and longer life while improving safety and improving liquid quality delivery.

Corrosion Control

Technologies for the prevention, detection and mitigation of corrosion/erosion in spaceport facilities and ground support equipment including refractory concrete. Solutions for: damage responsive coatings with corrosion inhibitors; poor-performing refractory concrete; protective coatings for non-painted surfaces; and new environmentally friendly protective coating options to replace products lost due to EPA regulation changes. Providing coating/protection solutions that meet current and emerging environmental restrictions and can endure the corrosive and highly acidic launch environment.

Spaceport Processing Systems Evaluation/Inspection Tools

Technologies in support of defect detection in composite materials; methods for determining structural integrity of bonded assemblies; and non-intrusive inspection of COPV, heat shield tiles and painted surfaces. Solutions for detecting and pinpointing corrosion; predicting remaining coatings effectiveness/life expectancy; identifying composite defects and evaluating integrity; non-destructive measurement and evaluation of composite overwrapped pressure vessels; and damage inspection and acceptance testing of Orion heat shield. Providing solutions that reduce inspection times and provide higher confidence in system reliability and safety concerns and
lower life cycle costs.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Sub Topics:

Metric Tracking of Launch Vehicles Topic O4.01
Range Safety requires accurate and reliable tracking data for launch vehicles. Onboard GPS receivers must maintain lock, reacquire very quickly and operate securely in a highly-dynamic environment. GPS Course Acquisition Code (CA) does not require classified decryption codes and has an accuracy of better than 30 m and 1 m/s. Although this accuracy is good enough for most Range Safety needs, better accuracy is needed for antenna pointing, docking maneuvers and attitude determination. CA code also offers little protection against deliberately transmitted false signals or “spoofing”.

This solicitation seeks proposals in the following areas:

- Innovative technologies to increase the accuracy of the L1 C/A navigation solution by combining the pseudoranges and phases of the L1 C/A signals. Factors that degrade the GPS signal can be obtained by differencing the available carrier phase and pseudorange measurements and then removing this difference from the navigation solution.
- Technologies that combine spatial processing of signals from multiple antennas with temporal processing techniques to mitigate interference signals received by the GPS receiver. The coordinated response of adaptive pattern control (beam and null steering) and digital excision of certain interfering signal components minimizes strong jamming signals. Adaptive nulling minimizes interfering signals by the optimal control of the GPS antenna pattern (null steering).

These technologies should be independent of any particular GPS receiver design.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a Phase 2 hardware and software demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Sub Topics:

Precision Spacecraft Navigation and Tracking Topic O4.02
This solicitation seeks proposals that will serve NASA’s ever-evolving set of near-Earth and interplanetary missions that require precise determination of spacecraft position and velocity in order to achieve mission success. While the definition of “precise” depends upon the mission context, typical scenarios have required meter-level or better position accuracies, and sub-millimeter-level or better velocity accuracies.

Research should be conducted to demonstrate technical feasibility during Phase 1, and show a path toward a Phase 2 hardware and/or software demonstration of a demonstration unit or software package that will be delivered to NASA for testing at the completion of the Phase 2 contract. The Small Spacecraft Build effort highlighted in Topic S4 (Low-cost Small Spacecraft and Technologies) of the solicitation participates in this subtopic. Offerors are
encouraged to take this in consideration as a possible flight opportunity when proposing work to this subtopic.

Purpose: NASA Needs vs. Current State of the Art

This solicitation is primarily focused on NASA’s needs in three focused areas: onboard near-Earth navigation systems; onboard deep-space navigation systems; technologies supporting improved TDRSS-based navigation. Proposals that leverage state-of-the-art capabilities already developed by NASA such as GEONS (http://techtransfer.gsfc.nasa.gov/ft-tech-GEONS.html [8]), Navigator (http://techtransfer.gsfc.nasa.gov/ft-tech-GPS-NAVIGATOR.html [9]), GIPSY, Electra, and Blackjack are especially encouraged. NASA is not interested in funding efforts that seek to “re-invent the wheel” by duplicating the many investments that NASA and others have already made in establishing the current state-of-the-art.

General Operational Specifications and Requirements:

Core Capabilities:

Onboard Near-Earth Navigation System

NASA seeks proposals that would develop a commercially viable transceiver with embedded orbit determination software that would provide enhanced accuracy and integrity for autonomous onboard GPS- and TDRSS-based navigation and time-transfer in near-Earth space via augmentation messages broadcast by TDRSS. The augmentation message should include information on the TDRS orbits, status, and health that could be provided by future TDRS, and should provide information on the GPS constellation that is based on NASA’s TDRSS Augmentation for Satellites Signal (TASS). Proposers are advised that NASA’s GEONS and GIPSY orbit determination software packages already support the capability to ingest TASS messages.

Onboard Deep-Space Navigation System

NASA seeks proposals that would develop an onboard autonomous navigation and time-transfer system that can reduce DSN tracking requirements. Such systems should provide accuracy comparable to delta differenced one-way ranging (DDOR) solutions anywhere in the inner solar system, and exceed DDOR solution accuracy beyond the orbit of Jupiter. Proposers are advised that NASA’s GEONS and DS-1 navigation software packages already support the capability to ingest many one-way forward Doppler, optical sensor observation, and accelerometer data types.

Technologies Supporting Improved TDRSS-based Navigation

NASA seeks proposals that would provide improvements in TDRS orbit knowledge, TDRSS radiometric tracking, ground-based orbit determination, and Ground Terminal improvements that improve navigation accuracy for TDRS users. Methods for improving TDRS orbit knowledge should exploit the possible future availability of accelerometer data collected onboard future TDRS.

Optional Capabilities:

NASA may consider other proposals relevant to NASA’s needs for precise spacecraft navigation and tracking that demonstrably advance the state-of-the-art.

Development Timeline Associated with NASA Needs:

Phase 1 deliverables should include documentation of technical feasibility, which should at minimum show a path toward hardware and/or software demonstration of a demonstration unit or software package in **Phase 2**.

Phase 2 deliverables should include a demonstration unit or software.

The proposer to this subtopic is advised that the products proposed may be included in a future small satellite flight opportunity. Please see the SMD Topic S4 on Small Satellites for details regarding those opportunities. If the proposer would like to have their proposal considered for flight in the small satellite program, the proposal should state such and recommend a pathway for that possibility.
Sub Topics:
Lunar Surface Navigation Topic O4.03
In order to provide location awareness, precision position fixing, best heading and traverse path planning for planetary EVA, manned rovers and lunar surface mobility units NASA has established requirements for organic navigation capabilities for surface-mobile elements of lunar missions. This topic will develop systems, technologies and analysis in support of the required capabilities of lunar surface mobility elements. Contemplated navigation systems could employ celestial references, passive or active optical information such as optical flow or range to local terrain features, inertial sensor information or other location-specific sensed data or combinations thereof. However, radiometric measurements are considered to be concomitant to the lunar communications network and the lunar network will likely be used to communicate state information between lunar mission elements. As such, the main emphasis of this topic is on systems that exploit radiometric measurements such as range, Doppler or Angle of Arrival. Radiometric measurements can be considered between lunar mission elements such as surface mobility units, elements of a lunar surface architecture (such as surface landers or habitation units or other surface mobility units) or elements of the lunar communications and navigation infrastructure such as surface communications towers or lunar communication/navigation orbiters. Earth-based nodes are not excluded from consideration, nor are two-way radiometric measurements, nor are non-NASA-standard (e.g. UWB) modulation schemes. Traverse-path planning systems and navigation-specific displays are also of interest.

Emphasis of the development is on navigation accuracy, Size Weight and Power (SWaP), systems that operate effectively with minimal communications/navigation infrastructure (such as towers or orbiters) or with complete autonomy, with minimal crew involvement or completely automatically. Unified concepts and systems that provide a range of hardware capabilities (possibly trading accuracy with SWaP) are of interest. Mature system concepts and technologies including system demonstration with TRL 6 components and internalized (by NASA) standards are required at the end of a Phase 2.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration and delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Sub Topics:
Timing Topic O4.04
One of the most critical components of robust relative navigation is accurate and reliable timing across the entire sensor suite. Clock errors, drift, and drift rates must be estimated and corrected. During extended duration operations small clock errors propagated from measurement to measurement can contribute to continued growth in positional errors. Improved timing estimation and reliability within a general navigation clocking system will improve navigational accuracy.

Purpose: This solicitation aims to develop two unique timing systems. The first timing system (TS) is for a relative navigation sensor suite to be utilized during lunar surface navigation that will utilize multiple sensors at different times. The sensor suite may include a star tracker, inertial measurement unit, vision-based feature recognition sensor, and RFID tag ranging devices. The TS will take an accurate time input from the primary base station at irregular intervals and a less accurate clock at periodic intervals from a software defined communications radio. The TS should, in an FPGA only, produce a clock signal suitable for time stamping and a clock pulse for four navigation sensors. This generated clock should be accurate to within 1ms of the base station input clock over a period of five minutes between primary clock inputs. Additionally, clock error, drift, and drift rates of the two input clocks and four output timing streams (time stamp and clock pulse) should be made available for analysis.

The second timing system is for proposals that improve timing standards. NASA seeks proposals that would improve accuracy for both ground-based tracking networks and onboard navigation systems by providing time and frequency standards that exceed the long-term performance of the GPS Block IIR Rb clocks (for ground-based applications) and current flight USO performance and also for tracking networks at ground-based locations. Timing accuracy is of the utmost importance for this TS; however, size, weight, and power consumption are still considerations. The goal of this TS is to improve the timing and frequency standards and, if possible, exceed the
long-term performance of the GPS Block IIR Rb clocks in the ground-based application.

Core capabilities: Provide an accurate and self-correcting time source suitable for use in a navigation system suite consisting of multiple sensors. The TS clock and time stamp output should be independently adjustable to the needs of the sensors.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward Phase 2 hardware and software demonstration, delivering a demonstration unit or software package for NASA testing at the completion of the Phase 2 contract.

Phase 1 Deliverables:

- A trade study on industry standard timing systems with a focus on overall accuracy and drift performance;
- Report on the tools and systems currently available;
- Recommendations on furthering the state-of-the-art in timing performance.

Phase 2 Deliverables:

- Demonstration of implemented timing system given the necessary inputs;
- Written report and presentation detailing the system performance including electrical and electronic characteristics;
- Delivery of the timing system and the environment used during development;
- Delivery of timing system math models for real-time simulation.

Sub Topics: