NASA SBIR 2021 Phase I Solicitation

Z8.12 Modular and Batch-Producible Small Spacecraft

Lead Center: ARC

Participating Center(s): MSFC

Scope Title:

Modular Open Systems Architectures for Small-Spacecraft Platforms

Scope Description:

This suptopic requests advances within modular open systems architectures for small spacecraft. As the most accessible spacecraft platform logistically and financially, small spacecraft benefit from a heritage based on rapid deployment and cost-effective missions. To further the state of the art (SOA) of both of these considerations, further cost savings may be found by standardizing the system architectures that drive the subsystems for these platforms. Such a realization would enable modular, hot-swappable spacecraft subsystems to accommodate the ever-increasing need for a wider definition of what small spacecraft are capable of and utilized for.

The development of standardized, hot-swappable interfaces should be compliant with and cognizant of NASA spacecraft standards. Of particular interest are designs acquiescent to the Agency standards existing between grounding, thermal, software, and data transfer interfaces.

The adaptability introduced by an open and modular, interchangeable commercial-off-the-shelf (COTS) architecture furthers the ability to tailor current spacecraft designs for novel applications without requiring significant modifications to existing platforms. Also of interest are advances in modules that minimize complexity in spacecraft manufacturing (such as deterring geometrical modifications by virtue of manufacturing). Advances in additive manufacturing may enable critical enhancements to the performance of small-spacecraft systems by embedding otherwise impractical internal features (such as through holes and cavities for electronics integration).

Systems that are applicable to small spacecraft (CubeSats up to Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) class), but scalable to large vehicles can result in a significant reduction of risk for more complex and longer duration missions. Near-term missions include:

- Cislunar, lunar orbiting, lunar landed, and exploration precursor.
- Low Earth orbit (LEO) “swarms” for Earth science and heliophysics.
- Disaggregated cooperative ensembles and sustained infrastructure for human exploration.

New applications might include manned spacecraft inspection, repair, communications support, and related areas. Proposals that provide reliable performance in extreme environments and that show a path to a flight demonstration are preferable.
The subtopic solicits developments in open modular architectures for small spacecraft and may include technologies that:

1. Provide interchangeable hardware and software with standardized interfaces.
2. Enable spacecraft to be built up from “plug and play” components.
3. Improve the state of the art of open interfacing platforms suitable for small spacecraft, leveraging COTS wherever possible.
4. Leverage novel manufacturing-in-the-loop considerations for small-spacecraft design standardization.
5. Increase the reliability and durability of small-spacecraft hardware and software by integrating subsystem considerations directly into the design process at the architectural level.
6. Demonstrate expanded adaptivity for small spacecraft, allowing for platforms to be rapidly varied with respect to altering objectives and variable risk postures.

Expected TRL or TRL Range at completion of the Project: 3 to 6
Primary Technology Taxonomy:
Level 1: TX 02 Flight Computing and Avionics
Level 2: TX 02.1 Avionics Component Technologies
Desired Deliverables of Phase I and Phase II:

- Research
- Analysis
- Prototype
- Hardware
- Software

Desired Deliverables Description:

Promising platform architectures that enable the standardization of COTS hardware and software could be demonstrated through benchtop setups validating numerous protocols and compliance with existing NASA design standards for small spacecraft. A demonstration of ease of hot-swapping would be ideal, demonstrating how rapidly such a system could be adapted for altered requirements with new instrumentation and subsystems.

The deliverables should address improvements for ease of integration of varied hardware and software, plug-and-play integration of small-spacecraft subsystems, increased assembly speed of small spacecraft, utilization of advanced manufacturing for ease of integration, automated error assessment for targeted repairability of subsystems, reduced small-spacecraft design complexity, and reduction of small-spacecraft development cost through standardized COTS.

Phase I Deliverable:

Trade study for and demonstration of how NASA small-spacecraft standards, such as thermal, grounding, and software/data normalizations, could be implemented into hot-swappable, modular architecture.

These architectures must be cognizant of:

- NASA thermal interface standards to demonstrate necessary conductivity and respective thermal isolation.
- NASA grounding interface standards to mitigate unwanted currents through single- or multiple-point grounding framework.
- NASA software and data interfacing standards, complying with Unified S-Band (USB) or Consultative Committee for Space Data Systems (CCSDS) standards.

Phase II Deliverable:

A benchtop hardware demonstration of open and modular architectures at work, exhibiting the standards within Phase I being conserved. The components should take advantage of supply-chain-compliant, heritage-relevant COTS whenever possible.
State of the Art and Critical Gaps:

The current SOA leverages COTS and compiled standards for integrating small spacecraft into a functional system meeting varied mission requirements. A number of in-house developments within NASA have complemented progress in academia and private industry to develop the infrastructure required to expand and normalize the definition of small-spacecraft-compliant subsystems and instrumentation. An issue arises with the software and hardware architecture regulating the agreement of these subsystems with NASA standards. Commercial vendors offering plug-and-play components are often only compliant with a limited number of subsystems, and consequently there exists a need to address this with an open modular architecture to enable more rapid, compliant, and consequently cost-effective small spacecraft that meet NASA's standards. Notable standardization gaps exist within communication gaps (such as wireless systems) and interconnectivity protocols, including but not limited to sustainable (and commonly grounded) power and data transfer with respect to manufacturability considerations.

Relevance / Science Traceability:

NASA and other space agencies are exploring the application of SmallSats for deep space missions. Modular architectures would enable a hot-swap adaptivity to altering mission requirements and serve as low-cost, rapid solutions for emerging destinations as they arise. Modular components allow easier reconfiguration and late additions to any design. Small-spacecraft modularity can be analogous for larger systems as well by virtue of defining and standardizing interconnectivity of universal COTS systems, enabling new objectives to be realized with a wide variety of instrumentation with a wide scope of requirements.

References:

Scope Title:

Batch-Producible Small Spacecraft

Scope Description:

The Batch-Producible Small Spacecraft subtopic requests proposals to address the need for industry collaboration to manufacture 30 to 100 small spacecraft for a wide variety of missions, addressing objectives ranging from heliophysics to constellation demonstrations and sensor web applications. The ability to fabricate relatively large "batches" of spacecraft will play an important role with regard to the throughput required for addressing the needs of the mission objectives listed above. As an advent in tandem with small-spacecraft swarms, batch-producible spacecraft are an increasing need as larger spacecraft are replaced with many smaller spacecraft, distributing sensing and collaboratively accomplishing objectives enabled novelty by variable topologies and network-based considerations.

Advances in batch producibility are in tandem with standardization of rapid manufacturing of small spacecraft by private industry and will likely take advantage of advances in throughput-favorable fabrication methods. The manufacturability of batch-producible small spacecraft would need to consider the required throughput of manufacturing as a factor intrinsic to the small-spacecraft design itself. These systems must still remain compliant with existing NASA small-spacecraft protocols for thermal, electrical, communications, and redundancy considerations. However, batch-producible spacecraft should leverage design methodologies that would decrease the cost and increase the compatibility of these standardized requisites by virtue of the manufacturing process itself, exhibiting design-for-standardization through the engineering process.

Such a batch-producible set of small spacecraft should leverage supply chain considerations wherever possible.
and should integrate commercial-off-the-shelf (COTS) components and instrumentation into the design of
spacecraft architecture. The end result of rapidly manufacturable batches of spacecraft should demonstrate a
significant reduction in manufacturing costs for 30 to 100 buses, with quicker turnaround times than otherwise
possible over a range of NASA-relevant projects.

Expected TRL or TRL Range at completion of the Project: 3 to 6

Primary Technology Taxonomy:
Level 1: TX 02 Flight Computing and Avionics
Level 2: TX 02.2 Avionics Systems and Subsystems

Desired Deliverables of Phase I and Phase II:

- Research
- Analysis
- Prototype
- Hardware
- Software

Desired Deliverables Description:

Phase I Deliverable

An overview and technical description of methods for batch producibility of small spacecraft within the range of 30
to 100 buses, demonstrating the integration of COTS as part of the framework. Successful demonstrations of this
deliverable should demonstrate an increase in the competency of the following objectives:

- A standardized high-throughput manufacturing method to enable the fabrication of small spacecraft in
 batches of 30 to 100 buses (within the scope of CubeSats, up to and including ESPA-class spacecraft).
- A systematic decision tree that addresses fabrication turnaround-time considerations as a factor of
 spacecraft complexity.
- Demonstrated cost decreases for spacecraft batches with respect to the current state of the art (SOA).
- The integration and normalization of COTS relevant for batch production of small spacecraft as a function of
 supply chain availability and vendor capabilities.

Phase II Deliverable

Integrating small-spacecraft standards into batch production and demonstrating an infrastructure that is batch-
compliant. Successful demonstrations of this deliverable should demonstrate an increase in the competency of the
following objectives:

- The integration of common NASA small-spacecraft standards (such as thermal, grounding,
 communications) directly into batch producibility.
- A method for rapid assembly of batch-produced small spacecraft that accounts for manufacturability directly
 into the architecture of common subsystems (such as power, communications, etc.).

State of the Art and Critical Gaps:

The current SOA of batch-produced small spacecraft relies heavily on the industry-demonstrated heritage of COTS
for small-satellites. These systems have limited throughput considerations and are currently inappropriate for
meeting future mission requisites pertaining to small spacecraft requiring the fabrication and integration of 30 to
100 spacecraft at a time (such as those relevant to heliophysics missions, network demonstrations, and swarm
considerations).

Relevance / Science Traceability:

Partnership with industry on batch production of spacecraft will be required for distributed missions including
synthetic apertures, disaggregated science observations, rapidly established planetary communications.
architectures, constellations, and sensor web applications; planned heliophysics missions call for 30 to 100 spacecraft. Technology development missions would also benefit from low-cost and shorter lead-time standardized bus platforms.

References:

- http://mstl.atl.calpoly.edu/~workshop/archive/2018/Spring/Day%201/Session%201/JimCockrell.pdf