NASA SBIR 2021 Phase I Solicitation

S5.04 Integrated Science Mission Modeling

Lead Center: JPL

Participating Center(s): GSFC

Scope Title:

Innovative System Modeling Methods and Tools

Scope Description:

NASA seeks innovative systems modeling methods and tools addressing the following needs:

1. Define, design, develop, and execute future science missions by developing and utilizing advanced methods and tools that empower more comprehensive, broader, and deeper system and subsystem modeling while enabling these models to be developed earlier in the lifecycle. Ideally, the proposed solutions should leverage MBSE (Model-Based Systems Engineering)/SysML (System Markup Language) approaches being piloted across NASA, allow for easier integration of disparate model types, and be compatible with current agile design processes.

2. Enable disciplined system analysis for the design of future missions, including modeling of decision support for those missions and integrated models of technical and programmatic aspects of future missions.

3. Evaluate technology alternatives and impacts, science valuation methods, and programmatic and/or architectural trades.

4. Specific areas of interest are listed below. Proposers are encouraged to address more than one of these areas with an approach that emphasizes integration with others on the list:

 - Conceptual phase models and tools that allow design teams to easily develop, populate, and visualize very broad, multidimensional trade spaces; methods for characterizing and selecting optimum candidates from those trade spaces, particularly at the architectural level. There is specific interest in models and tools that facilitate comprehensive comparison of architectural variants of systems.

 - Capabilities for rapid-generation models of function or behavior of complex systems at either the system or the subsystem level. Such models should be capable of eliciting robust estimates of system performance given appropriate environments and activity timelines, and should be tailored:
 - To support emerging usage of autonomy, both in mission operations and flight software as well as in growing usage of autocoding.
 - To operate within highly distributed, collaborative design environments, where models and/or infrastructure that support/encourage designers are geographically separated (including Open Innovation environments). This includes considerations associated with near-real-time (concurrent) collaboration processes and associated model integration and configuration management practices.
 - To be capable of execution at variable levels of fidelity/uncertainty. Ideally, models should have the
ability to quickly adjust fidelity to match the requirements of the simulation (e.g., from broad-and-
shallow to in-depth and back again).

- Target models (e.g., phenomenological or geophysical models) that represent planetary surfaces, interiors,
atmospheres, etc., and associated tools and methods that allow for integration into system design/process
models for simulation of instrument responses. These models may be algorithmic or numeric, but should be
useful to designers wishing to optimize remote sensing systems for those planets.

Note that this topic area addresses a broad potential range of science mission-oriented modeling tools and
methods. This includes the integration of these tools into broader model-based engineering frameworks, and also
includes proposals with MBSE/SysML as the primary focus.

Expected TRL or TRL Range at completion of the Project: 3 to 5
Primary Technology Taxonomy:
Level 1: TX 11 Software, Modeling, Simulation, and Information Processing
Level 2: TX 11.X Other Software, Modeling, Simulation, and Information Processing
Desired Deliverables of Phase I and Phase II:

- Prototype
- Software
- Research

Desired Deliverables Description:

Phase I should provide a final report that describes the methodology and proof of concept of adaptability of the
model for NASA use.

At the completion of Phase II, NASA desires a working prototype suitable for demonstrations with "real" data to
make a compelling case for NASA usage. Use and development of the model—including any and all work
performed to verify and validate it—should be documented.

State of the Art and Critical Gaps:

There currently are a variety of models, methods, and tools in use across the Agency and with our industry
partners. These are often custom, phase-dependent, and poorly interfaced to other tools. The disparity between
the creativity in the early phases and the detail-oriented focus in later phases has created phase transition
boundaries, where missions not only change teams but tools and methods as well. We aim to improve this.

As NASA continues its move into greater use of models for formulation and development of NASA projects and
programs, there are recurring challenges to address. This subtopic focuses on encouraging solutions to these
cross-cutting modeling challenges.

These cross-cutting challenges include: greater modeling breadth (e.g., cost/schedule), depth (scalability), variable
fidelity (precision/accuracy vs. computation time), trade space exploration (how to evaluate large numbers of
options), and processes that link them together. The focus is not on specific tools, but demonstrations of capability
and methodologies for achieving the above.

The explosion of MBX (model-based everything) has led to a proliferation of models, modeling processes, and the
integration/aggregation thereof. The model results are often combined with no clear understanding of the
fidelity/credibility. While some NASA personnel are looking for greater accuracy and "single source of truth,” others
are looking for the generation and exploration of massive trade spaces. Both greater precision and greater
robustness will require addressing the cross-cutting challenges cited above.
Relevance / Science Traceability:

Several concept/feasibility studies for potential large (flagship) Astrophysics missions are in progress: Large UV/Optical/IR Surveyor (LUVOIR), Origins Space Telescope (OST), Habitable Exoplanet Observatory (HabEx), and Lynx. Following the 2020 Astrophysics decadal rankings, one of these will likely proceed to early Phase A, where the infusion of new and advanced systems modeling tools and methods would be a potential game-changer in terms of rapidly navigating architecture trades, requirements development and flow-down, and design optimization.

A variety of planetary missions requires significant modeling and simulation across a variety of possible trade spaces. The portions of this topic area focused on breadth and variable fidelity will support them.

References:

- Habitable Exoplanet Observatory (HabEx): https://www.jpl.nasa.gov/habex/
- Lynx: https://wwwastro.msfc.nasa.gov/lynx/
- Wide Field Infrared Survey Telescope (WFIRST): https://www.nasa.gov/content/goddard/wfirst-wide-field-infrared-survey-telescope
- Mars Exploration/Program & Missions: https://mars.nasa.gov/programmissions/
- JPL Missions: https://www.jpl.nasa.gov/missions/