NASA SBIR 2020 Phase I Solicitation

H10.01 Advanced Propulsion Systems Ground Test Technology

Lead Center: SSC

Participating Center(s): KSC

Technology Area: TA13 Ground and Launch Systems Processing

Scope Title

Advanced Propulsion Test Technology Development

Scope Description

Rocket propulsion development is enabled by rigorous ground testing to mitigate the propulsion system risks that are inherent in spaceflight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage, in-space propulsion and so forth. It involves a combination of component and engine-level testing to demonstrate the propulsion devices were designed to meet the specified requirements for a specified operational envelope over robust margins and shown to be sufficiently reliable prior to its first flight.

This topic area seeks to develop advanced ground test technology components and system level ground test systems that enhance Chemical and Advanced Propulsion technology development and certification. The goal is to advance propulsion ground test technologies to; enhance environment simulation, minimize test program time, cost and risk; and meet existing environmental and safety regulations. It is focused on near-term products that augment and enhance proven, state-of-the-art propulsion test facilities. This project is especially interested in ground test and launch environment technologies with potential to substantially reduce the costs and improve safety/reliability of NASA's test and launch operations.

In particular, technology needs include stable combustion of oxygen and hydrogen in a low pressure duct, developing robust materials, and advanced instruments and monitoring systems capable of operating in extreme temperature and harsh environments.

This subtopic seeks innovative technologies in the following areas:

- Design of technology/techniques for oxygen injection into a duct that assures stable combustion with hot (>1700°R) hydrogen at low pressure (<25 psia), having an oxidizer to fuel mixture ratio of 9 for an oxygen flow rate of approximately 2.7 lbm/sec. This technology solution must be extensible to a system having an oxygen flow rate of approximately 270 lbm/sec.
- Devices for measurement of pressure, temperature, strain and radiation in a high temperature and/or harsh environment.
- Development of innovative rocket test facility components (e.g., valves, flowmeters, actuators, tanks, etc.)
for ultra-high pressure (>8000 psi), high flow rate (>100 lbm/sec) and cryogenic environments.

- Robust and reliable component designs which are oxygen compatible and can operate efficiently in high vibro-acoustic, environments.
- Advanced materials to resist high-temperature (<4400°F), hydrogen embrittlement and harsh environments.
- Tools using computational methods to accurately model and predict system performance that integrate simple interfaces with detailed design and/or analysis software, are required. Stennis Space Center (SSC) is interested in improving capabilities and methods to accurately predict and model the transient fluid structure interaction between cryogenic fluids and immersed components to predict the dynamic loads and frequency response of facilities.
- Improved capabilities to predict and model the behavior of components (valves, check valves, chokes, etc.) during the facility design process are needed. This capability is required for modeling components in high pressure (to 12,000 psi), with flow rates up to several thousand lb/sec, in cryogenic environments and must address two-phase flows. Challenges include: accurate, efficient, thermodynamic state models; cavitation models for propellant tanks, valve flows, and run lines; reduction in solution time; improved stability; acoustic interactions; fluid-structure interactions in internal flows.

For all above technologies, research should be conducted to demonstrate technical feasibility during Phase I and show a path towards Phase II hardware/software demonstration with delivery of a demonstration unit or software package for NASA testing at the completion of the Phase II contract.

References

https://www.nasa.gov/centers/stennis/home/index.html

https://technology.ssc.nasa.gov/

Expected TRL or TRL range at completion of the project: 4 to 6

Desired Deliverables of Phase II

Prototype, Hardware, Software

Desired Deliverables Description

For all above technologies, research should be conducted to demonstrate technical feasibility during Phase I and show a path towards Phase II hardware/software demonstration with delivery of a demonstration unit or software package for NASA testing at the completion of the Phase II contract.

State of the Art and Critical Gaps

This subtopic seeks to provide technological advances that provide the ability to test next generation rocket propulsion systems while reducing costs, increasing efficiencies and improving safety/reliability within the static rocket engine test environment. Specifically, the goal is to reduce costs of propellants and other fluids; reduce logistics costs; reduce times required for ground processing and launch; reduced mission risk; and reduced hazards exposure to personnel.

There is a broad range of technologies needed to support rocket propulsion testing. Dynamic fluid flow simulation is used to characterize and model the facility performance in a highly dynamic environment with NASA, Department of Defense (DoD) and commercial customers. Multiple issues remain with modeling combustion instabilities and component/facility performance. These issues can have catastrophic results if not understood completely. New test programs will require the materials to withstand extreme temperatures and harsh environments. Next generation testing requires the ability to produce very high temperature hydrogen at high near-continuous flow rates to verify component and facility performance. The extreme and harsh environment also requires advancements in mechanical components and instrumentation.

Relevance / Science Traceability

Subtopic is relevant to the development of liquid propulsion systems development and verification testing in support
of the Human Exploration and Mission Operations Directorate (HEOMD), all test programs at SSC and other propulsion system development centers.