NASA is pursuing technologies to enable robotic exploration of the Solar System including its planets, their moons, and small bodies. NASA has a development program that includes technologies for the atmospheric entry, descent, and landing, mobility systems, extreme environments technology, sample acquisition and preparation for in situ experiments, and in situ planetary science instruments. Robotic exploration missions that are planned include a Europa lander, a rover or balloon-borne experiment on Titan, a surface mission to Venus, and continued Mars exploration missions launching every 26 months including a network lander mission, an Astrobiology Field Laboratory, and other rover missions. Numerous new technologies will be required to enable such ambitious missions. The solicitation for in situ planetary instruments can be found in the in situ instruments section of this solicitation. See URL: http://solarsystem.nasa.gov/missions/index.cfm for mission information. See URL: http://marstech.jpl.nasa.gov/ for additional information on Mars Exploration technologies.

In 2007 the emphasis for SBIR in robotic exploration will be in the following areas: (1) Surface and subsurface robotic exploration; (2) Sample collection, processing and handling devices; (3) Planetary entry, descent and landing technology; (4) Extreme environments technology; and (5) Planetary balloons and aerobots.

Subtopics

S5.01 Extreme Environments Technology

Lead Center: JPL
Participating Center(s): ARC, GRC, GSFC, MSFC

High temperature, high pressure, and chemically corrosive environments:

Proposals are sought for technologies that enable the in situ exploration of the surface and deep atmosphere of Venus and the deep atmospheres of Jupiter or Saturn for future NASA missions. Venus features a dense, CO₂ atmosphere completely covered by sulfuric acid clouds at about 55 km above the surface, a surface temperature of about 486°C and a surface pressure of about 90 atmospheres. Although already explored by various orbiters and short-lived atmospheric probes and landers, Venus retains many secrets pertaining to its formation and evolution.
NASA is interested in expanding its ability to explore the deep atmosphere and surface of Venus through the use of long-lived (days or weeks) balloons and landers. Survivability in extreme high temperatures and high pressures is also required for deep atmospheric probes to giant planets. Technology advancements to permit operation and survivability in high-temperature/high-pressure planetary environments are sought in the following areas:

Thermal Control Systems: Survivability of electronic components in high temperature environments relies on three basic areas of thermal control: isolation, thermal capacitance and/or refrigeration. Specific improvements in are sought in the development of:

- Thermal energy storage systems with 300 - 1000 kJ/kg energy density through either phase changes or chemical heat absorption;
- High performance, low mass refrigeration cooling systems capable of pumping on the order of 100 Watts of heat from a 100ºC source to the Venus sink temperature of 486ºC. In this area, particular attention must be paid to the power source for such a system. A total systems approach must be considered as opposed to development of a particular component.

Pressure Vessel Components:

- Optical Window systems that are transparent in IR, Visible and UV wavelengths at Venus surface temperatures that remain sealed under expected mission temperature variations from -50ºC to 486ºC and from external pressure variation from 0 to 90 atmospheres.
- Pressure vessel flange seal technology compatible with materials such as stainless steels, titanium and beryllium. Seals shall exhibit leakage rates lower than 10-5 cc He/sec over the expected mission temperature variations from -50ºC to 486ºC and from external pressure variation from 0 to 90 atmospheres. Clamping loads for the seals shall be less than 1500 pounds per linear inch.

Low temperature environments:

Moon equatorial regions experience wide temperature swings from -180°C to +130°C during the lunar day/night cycle, and the sustained temperature at the shadowed regions of lunar poles can be as low as -230°C. Mars diurnal temperature changes from about -120°C to +20°C. Low temperature survivability is also required for missions to Titan, surface of Europa and comets. Proposals are sought in the following specific areas:

- Wide temperature (-180°C to +130°C) and low-temperature (-230°C), radiation-tolerant and SEL immune, low power, mixed-signal circuits including analog-to-digital converters, digital-to-analog converters,
low-noise pre-amplifiers, voltage and current references, multiplexers, power switches, microcontrollers,
and integrated command/control/drive electronics for sensors, actuators, and communications
transponders.

- Computer Aided Design (CAD) tools for predicting the electrical performance, reliability, and life cycle for
 low-temperature electronic systems and components.

- Physics-based transistor device models valid at temperature ranging from -230°C to +130°C to enable
 design, verification and fabrication of custom low power mixed-signal and analog circuits.

- Low-temperature (-230°C) circuit design methodologies facilitating novel layout designs for integrated
 mixed-signal and analog circuits.

- Selected hardware and support technologies for motors, drive systems and related mechanisms that will
 operate in low temperature environments. Specific areas of interest include gear boxes, suspension
 systems, material components (i.e., wiring, harnesses, insulating materials, and jackets/covers) that can
 operate in cryogenic environments; advanced lubricants and lubrication technology.

Research should be conducted to demonstrate technical feasibility during Phase 1 and show a path toward a
Phase 2 hardware/software demonstration, and when possible, deliver a demonstration unit for functional and
environmental testing at the completion of the Phase 2 contract.

S5.02 Planetary Entry, Descent and Landing Technology

Lead Center: JPL

Participating Center(s): ARC, JSC, LaRC

NASA seeks innovative sensor technologies to enhance success for entry, descent and landing (EDL) operations
on missions to Mars. This call is not for sensor processing algorithms. Sensing technologies are desired which
determine the entry point of the spacecraft in the Mars atmosphere; provide inputs to systems that control
spacecraft trajectory, speed, and orientation to the surface; locate the spacecraft relative to the Martian surface;
evaluate potential hazards at the landing site; and determine when the spacecraft has touched down. Appropriate
sensing technologies for this topic should provide measurements of physical forces or properties that support some
aspect of EDL operations. NASA also seeks to use measurements made during EDL to better characterize the
Martian atmosphere, providing data for improving atmospheric modeling for future landers. Proposals are invited for
innovative sensor technologies that improve the reliability of EDL operations.

Products or technologies are sought that can be made compatible with the environmental conditions of spaceflight
and the rigors of landing on the Martian surface. Successful candidate sensor technologies can address this call
by:

Page 3 of 7
Providing critical measurements during the entry phase (e.g., pressure and/or temperature sensors embedded into the aeroshell);

- Improving the accuracy on measurements needed for guidance decisions (e.g., surface relative velocities, altitudes, orientation, localization);

- Extending the range over which such measurements are collected (e.g., providing a method of imaging through the aeroshell, or terrain-relative navigation that does not require imaging through the aeroshell);

- Enhancing the situational awareness during landing by identifying hazards (rocks, craters, slopes), or providing indications of approach velocities and touchdown;

- Substantially reducing the amount of external processing needed to calculate the measurements; and

- Significantly reducing the impact of incorporating such sensors on the spacecraft in terms of volume, mass, placement, or cost.

S5.03 Sample Collection, Processing, and Handling Devices

Lead Center: JPL

Participating Center(s): ARC, GSFC

Robust systems for sample acquisition from the subsurface of planetary bodies are critical to the next generation of robotic explorers. Limited spacecraft resources (power, volume, mass, computational capabilities, and telemetry bandwidth) demand innovative, integrated sampling systems that can survive and operate in challenging environments (extremes in temperature, pressure, gravity, vibration and thermal cycling).

Research should be conducted to develop compact, low-power, lightweight subsurface sampling systems with access to depths of 1 - 3 m below the surface. A relevant mission scenario for this type of drill would include drilling multiple holes from a mobile platform, such as a rover. For reference, current Mars-relevant rovers range in mass from 200 - 800 kg. Also of interest are integrated systems for 1-10 cm subsurface sampling.

Consideration should be given to potential failure scenarios for integrated systems. For example, recovery and mitigation techniques for platform slip and borehole misalignment should be addressed. Significant attention should be given to the sensing and automation required for real-time control, fault diagnosis and recovery. Additional areas of interest include understanding the limitations of dry drilling into mixed media such as icy mixtures of rock and regolith and hot subsurface materials at high pressure (up to 740 K in a 90 bar CO\textsubscript{2} environment).
Sample manipulation technologies are needed to enable handling and transfer of unstructured samples from a sampling device to instruments and sample processing systems. Shallow rock core and regolith samples may be variable in size and composition so a sample manipulation system needs to be flexible enough to handle the sample variability. Core samples will be on the order of 1 cm diameter and up to 10 cm long. Soil and rock fragment samples will be of similar volumes. Actual samples to be analyzed in instruments will likely be small subsamples so the means for subsampling and manipulation of the original sample and subsamples needs to be developed. Minimal size and mass components and systems have the greatest benefit.

Also of particular need are means of acquiring subsurface rock and regolith samples with minimum contamination. This contamination may include contaminants brought to the sample by the drill itself, material from one stratigraphic layer contaminating samples collected at another depth (sample cross-contamination), or Earth-source microorganisms brought to the Martian surface prior to drilling (‘clean’ sampling from a ’dirty’ surface).

S5.04 Surface and Subsurface Robotic Exploration

Lead Center: JPL

Participating Center(s): ARC, GSFC

Technologies are needed to enable access to surface and subsurface sampling sites of scientific interest on Mars. Mobility technology is needed to enable access to difficult-to-reach sites such as access through steep terrain. Many scientifically valuable sites are accessible only via terrain that is too steep for state-of-the-art planetary rovers to traverse. Sites include crater walls, canyons, and gullies. Tethered systems, non-wheeled systems, and marsupial systems are examples of mobility technologies that are of interest. Tether technology could enable new approaches for deployment, retrieval and mobility. Innovative marsupial systems could allow a pair of vehicles with different mobility characteristics to collaborate to enable access to challenging terrain. It is envisioned that a 500-800 kg primary vehicle could provide long traverse to the vicinity of a challenging site and then deploy a smaller 20-50 kg vehicle with steep mobility access capability for access to the site.

Technologies to enable subsurface access and sampling in multiple holes at least 1 - 3 meters deep through rock, regolith or ice compositions are also sought. Subsurface access solutions to be integrated onto 500-800 kg stationary landers and mobile platforms are of interest. Consideration should be given for potential failure scenarios, such as platform slip and borehole misalignment for integrated systems, and the challenges of dry drilling into mixed media including icy mixtures of rock and regolith. Systems should ensure minimal contamination of samples from Earth-source contaminants and cross-contamination from samples at different depths.

Innovative low-mass, low-power, and modular systems and subsystems are of particular interest. Technical feasibility should be demonstrated during Phase 1 and a full capability unit of at least TRL level 4-6 should be
delivered in Phase 2. Specific areas of interest include the following:

- Tether play-out and retrieval systems including tension and length sensing;
- Low-mass tether cables with power and communication;
- Steep terrain adherence for vertical and horizontal mobility;
- Modular actuators with 1000:1 scale gear ratios;
- Electro-mechanical couplers to enable change out of instruments on an arm end-effector;
- Drill, core, and boring systems for subsurface sampling at 1 to 3 meters.

S5.05 Planetary Balloons and Aerobots

Lead Center: JPL
Participating Center(s): GSFC

Innovations in materials, structures, and systems concepts have enabled buoyant vehicles to play an expanding role in NASA's Solar System Exploration Program. Balloons and airships will carry scientific payloads on Mars, Venus, Titan, and the outer planets in order to investigate their atmospheres in situ and their surfaces from close proximity. Their envelopes will be subject to extreme environments and must support missions with a range of durations. Proposals are sought in the following areas:

Aerial Deployment Modeling Tool

Many aerobot concepts for Mars, Titan, and Venus involve the aerial deployment and inflation of the balloon during parachute descent after arrival at the destination. Proposals are sought that would provide computer modeling tools that can simulate this complex process. Of particular importance is the ability to model the balloon shape and material stresses as a function of time, taking into account the aerodynamic forces generated by the parachute and by the uninitialized or partially inflated balloon, as well as transient loads during balloon deployment from its storage container. The balloons can be either polymer film or polymer film plus reinforcing fabric laminates.

Metal Bellows for High Temperature Venus Balloons

Cylindrically-shaped metal bellows are a potential solution to the problem of making balloons that can tolerate the
460°C temperatures near the surface of Venus. Commercial off-the-shelf metal bellows are limited in diameter to approximately 0.4 m. NASA seeks proposals for metal bellows technology that can produce prototypes in the range of 1 - 2 m in diameter and 5 - 10 m long; tolerant of sulfuric acid; good fatigue properties at 460°C; and areal densities of up to 1 kg/m².

High Strength Envelope Materials for Titan Aerobots

NASA currently has viable cryogenic balloon materials based on polyester film plus fabric laminates. It is desired to have new, advanced materials that possess at least a 50% improvement in the strength to weight ratio while retaining comparable flexibility to the current polyester materials. The desired areal densities are in the range of 40-80 g/m² so as to support both superpressure and zero pressure balloon concepts. Of particular interest is the use of existing high strength fiber materials like Vectran, Spectra, Dyneema, PBO and Twaron/Kevlar to achieve the desired performance. Preference will be given to proposals that include significant material sample fabrication and cryogenic testing.

Ground-launched Mars Balloons

NASA is interested in small balloons with very light payloads (