The objective of this subtopic is to develop information technologies that enable robots to better support space exploration. Robots are already at work in all of NASA's Mission Directorates and will be critical to the success of future exploration missions. The NASA "Robotics, Tele-Robotics, and Autonomous Systems" roadmap (TA04) indicates that extensive and pervasive use of robots can significantly enhance exploration, particularly for missions that are progressively longer, complex, and operate with fewer ground control resources.

Intelligent robots can do a variety of work to increase the productivity of planetary exploration. Robots can perform tasks that are highly-repetitive, long-duration, or tedious. Robots can perform tasks that help prepare for subsequent human missions. Robots can perform "follow-up" work, completing tasks started by astronauts. Example robotic tasks include:

- Scouting.
- Site surveys.
- Sampling.
- Payload deployment.
- EVA close-out work.

The performance of intelligent robots is directly linked to the quality and capability of the information technologies used to build and operate them. Thus, proposals are sought that address the following technology needs:

- Advanced user interfaces for telerobotics, which facilitate distributed collaboration, geospatial data visualization, summarization and notification, and robot tasking. This does NOT include user interfaces for direct teloperation (e.g., joystick-based rate control), telepresence, or immersive virtual reality. The primary objective is to enable more effective and efficient interaction with semi-autonomous telerobots. (TA04 roadmap technical area 4.4).
- Mobile robot navigation (localization, hazard detection and avoidance, etc) for operations in man-made and unstructured environments. Emphasis on multi-sensor data fusion, obstacle detection, and proximity ops.
The primary objective is to radically and significantly increase the performance of mobile robot navigation through advanced on-board software. (TA04 roadmap technical areas 4.1 and 4.2).

- Robot software architecture that radically reduces operator workload for remotely operating planetary rovers. This includes frameworks for adjustable autonomy, on-board health management and prognostics, automated data triage, and high-performance robot middleware. The primary objective is to facilitate the creation, extensibility and maintenance of complex robot systems. (TA04 roadmap technical area 4.5).