NASA STTR 2006 Phase I Solicitation

T3.01 Space Power and Propulsion

Lead Center: GRC

Center: GRC

Development of innovative technologies and systems are sought that will result in robust, lightweight, ultra-high efficiency, lower cost, power and in-space propulsion systems that are long-lived in the relevant mission environment and that enable future missions. The technology developments being sought would, through highly-efficient generation and utilization of power and in-space propulsion, significantly increase the system performance.

Innovations are sought that will significantly improve the efficiency, mass specific power, operating temperature range, radiation hardness, stowed volume, flexibility/reconfigurability, and autonomy of space power systems. In power generation, advances are needed in photovoltaic cell structure including the incorporation of nanomaterials; module integration including monolithic interconnections and high-voltage operation; and array technologies including ultra-lightweight deployment techniques for flexible, thin-film modules, and concentrator techniques as well as dynamic power generation systems for nuclear power conversion. In energy storage systems, advances are needed in batteries-primary and rechargeable-regenerative fuel cells, and flywheels. Advances are also needed in power management and distribution systems, power system control, and integrated health management.

Innovations are sought that will improve the capability of spacecraft propulsion systems. In solar electric propulsion technology, advances are needed for ion, Hall, and advanced plasma thrusters including cathodes, neutralizers, electrode-less plasma production, low-erosion materials, high-temperature permanent magnets, and power processing. Innovations are needed for xenon, krypton, and metal propellant storage and distribution systems. In small chemical propulsion technology, advances are sought for non-catalytic ignition methods for advanced monopropellants and high-temperature, reactive combustion chamber materials. Also, advances are sought for chemical, electrostatic, or electromagnetic miniature and precision propulsion systems and nano- and autonomous systems that include nanomaterials, high temperature shape memory alloys, and piezoelectric materials as well as control systems for autonomous, adaptive engine control and sealing.