NASA SBIR 2007 Phase I Solicitation

A2.04 Aeroelasticity

Lead Center: LaRC

Participating Center(s): AFRC, ARC, GRC

The NASA Fundamental Aeronautics Program has the goal to develop system-level capabilities that will enable the civilian and military designers to develop revolutionary systems, in particular by integrating methods and technologies to develop multi-disciplinary solutions. Aeroelastic behavior of flight vehicles is a particularly challenging facet of that goal.

The program's work on aeroelasticity includes conduct of broad-based research and technology development to obtain a fundamental understanding of aeroelastic and unsteady-aerodynamic phenomena experienced by aerospace vehicles, in subsonic, transonic, supersonic, and hypersonic speed regimes. The program content includes theoretical aeroelasticity, experimental aeroelasticity, and advanced aeroservoelastic concepts. Of interest are aeroelastic, aeroservoelastic, and unsteady aerodynamic analyses at the appropriate level of fidelity for the problem at hand; aeroelastic, aeroservoelastic, and unsteady aerodynamic experiments, to validate methodologies and to gain valuable insights available only through testing; development of computational-fluid-dynamic, computational-aeroelastic, and computational-aeroservoelastic analysis tools that advance the state-of-the-art in aeroelasticity through novel and creative application of aeroelastic knowledge.

The technical discipline of aeroelasticity is a critical ingredient necessary in the design process of a flight vehicle for assuring freedom from catastrophic aeroelastic and aeroservoelastic instabilities. This discipline requires a thorough understanding of the complex interactions between a flexible structure and the unsteady aerodynamic forces acting on the structure, and at times, active systems controlling the flight vehicle. Complex unsteady aerodynamic flow phenomena, particularly at transonic Mach numbers, are also very important because this is the speed regime most critical to encountering aeroelastic instabilities. In addition, aeroelasticity is presently being exploited as a means for improving the capabilities of high performance aircraft through the use of innovative active control systems using both aerodynamic and smart material concepts. Work to develop analytical and experimental methodologies for reliably predicting the effects of aeroelasticity and their impact on aircraft performance, flight dynamics, and safety of flight are valuable. Subjects to be considered include:
• Development of design methodologies that include CFD steady and unsteady aerodynamics, flexible structures, and active control systems.

• Development of methods to predict aeroelastic phenomena and complex steady and unsteady aerodynamic flow phenomena, especially in the transonic speed range. Aeroelastic phenomena of interest include flutter, buffet, buzz, limit cycle oscillations, and gust response. Flow phenomena of interest include viscous effects, vortex flows, separated flows, transonic nonlinearities, and unsteady shock motions.

• Development of efficient methods to generate mathematical models of wind-tunnel models and flight vehicles for performing vibration, aeroelastic, and aeroservoelastic studies.

• Development of unique control concepts that employ smart materials embedded in the structure and/or aerodynamic control surfaces for suppressing aeroelastic instabilities or for improving performance.

• Development of techniques that support simulations, ground testing, wind-tunnel tests, and flight experiments of aeroelastic phenomena.

Flight regimes of interest in the Fundamental Aeronautics Program include subsonic, supersonic, and hypersonic. The goal of the program is to develop validated physics-based multidisciplinary design, analysis, and optimization tools, integrated with technology development. Topics of interest include, but are not limited to, the following:

• Structure-induced noise, flutter and dynamic response prediction, stiffness and strength tailoring, propulsion-specific structures, quasi-static aeroelasticity. Fluid-structure interaction, validation methods, data processing and interpretation methods, probabilistic modeling, rapid modeling analysis development, non-linear and time-varying methods development, unstructured grid methods, additional propulsion systems-specific methods, dampers, multistage effects, non-synchronous vibrations, coupling effects on blade vibration, probabilistic aerodynamics and aeroelasticities. Stiffness and strength tailoring and actively controlled propulsion system core components (e.g., fan and turbine blades, vanes). High fidelity unsteady aeroelastic capability which utilize current and future computer capabilities effectively. Advanced turbomachinery active damping concept. Rapid, high-fidelity probabilistic aerelastic modeling capability.

• Physics-based models for turbomachinery aerelasticity related to highly separated flows, shedding, rotating stall, non-synchronous vibrations (NSV). Robust, fast-running, accelerated convergence, reduced-order CFD approaches to turbomachinery aerelasticity for propulsion applications. Blade vibration measurement systems including closely spaced modes, blade-to-blade variations (misting) and system identification. Blade damping systems for metallic and composite blades, including passive and active damping methods.

• Aeroservoelasticity, including alternative control architectures, development and testing of control law concepts. Integrated tool set for fully coupled modeling and simulation of aeroservo thermoelasticity/flight dynamic (ASTE/FD) and propulsion effects. Development of CFD-based methods (reduced-order models) aeroservoelasticity models that can be used to predict and alleviate gust loads, ride quality issues, and flutter issues. Fast and accurate aeroelastic analysis methods to predict fan/compressor flutter vibrations in the presence of the inlet and neighboring blade rows. Vortical effects and nonlinear unsteady aerodynamics influence on the aeroelastic/ASE response of supersonic configurations.

• Lightweight structures and flexible structures under aerodynamic loads, with emphasis on aeroelastic phenomena in hypersonic domain. High temperatures associated with high heating rates, resulting in additional complexities associated with varying thermal expansion and temperature dependent structural coefficients. Acquisition of data to verify analysis tools with these complexities.