NASA SBIR 2007 Phase I Solicitation

A2.08 Experimental Capabilities and Flight Research

Lead Center: AFRC

Participating Center(s): ARC, LaRC

This subtopic is intended to solicit technologies for the following:

Modeling, identification, simulation, and control of aerospace vehicles in-flight research, flight sensors, sensor arrays and airborne instruments for flight research, and advanced aerospace flight concepts.

Safer and more efficient design of advanced aerospace vehicles requires advancement in current predictive design and analysis tools. The goal is to develop more efficient software tools for predicting and understanding the response of an airframe under the simultaneous influences of structural dynamics, thermal dynamics, steady and unsteady aerodynamics, and the control system. The benefit of this effort will ultimately be an increased understanding of the complex interactions between the vehicle dynamics subsystems with an emphasis on flight research validation methods for control-oriented applications. Proposals for novel multidisciplinary nonlinear dynamic systems modeling, identification, and simulation for control objectives are encouraged. Control objectives include feasible and realistic boundary layer and laminar flow control, aeroelastic maneuver performance and load control (including smart actuation and active aerostructural concepts), autonomous health monitoring for stability and performance, and drag minimization for high efficiency and range performance. Methodologies should pertain to any of a variety of types of vehicles ranging from low-speed, high-altitude, long-endurance to hypersonic and access-to-space aerospace vehicles.

Real-time measurement techniques are needed to acquire aerodynamic, structural, control, and propulsion system performance characteristics in-flight and to safely expand the flight envelope of aerospace vehicles. The scope of this subtopic is the development of sensors, sensor systems, sensor arrays, or instrumentation systems for improving the state-of-the-art in aircraft ground or flight research. This includes the development of sensors to enhance aircraft safety by determining atmospheric conditions. The goals are to improve the effectiveness of flight research by simplifying and minimizing sensor installation, measuring new parameters, improving the quality of measurements, minimizing the disturbance to the measured parameter from the sensor presence, deriving new
information from conventional techniques, or combining sensor suites with embedded processing to add value to
output information. This topic solicits proposals for improving airborne sensors and sensor instrumentation systems
in all flight regimes - particularly transonic and hypersonic. These sensors and systems are required to have fast
response, low volume, minimal intrusion, and high accuracy and reliability.

This subtopic further solicits innovative flight test experiments that demonstrate breakthrough vehicle or system
concepts, technologies, and operations in the real flight environment. The emphasis of this subtopic is the
feasibility, development, and maturation of advanced flight research experiments that demonstrate advanced or
revolutionary methodologies, technologies, and concepts, particularly related to separation characterization in
subsonic flight, shockwave propagation in supersonic flight, and small scale technology development in hypersonic
flight. It seeks advanced flight techniques, operations, and experiments that promise significant leaps in vehicle
performance, operation, safety, cost, and capability; and that require a demonstration in an actual-flight
environment to fully characterize or validate advances.