NASA SBIR 2006 Phase I Solicitation

X2.03 Software Engineering Technologies for Human-Rated Spacecraft

Lead Center: ARC

Participating Center(s): GSFC, JPL, JSC

The objective of this subtopic is to bring to fruition software engineering technologies that enable engineers to cost-effectively develop and maintain NASA mission-critical software systems. Particular emphasis will be on software engineering technologies applicable to the high levels of reliability needed for human-rated space vehicles. A key requirement is that proposals address the usability of software engineering technologies by NASA (including NASA contractors) engineers, and not only specialists.

Many of the capabilities needed for successful human exploration of space will rely on software. In addition to traditional capabilities, such as GNC (guidance, navigation, and control) or C&DH (command and data handling), new capabilities are under development: integrated vehicle health management, autonomous vehicle-centered operations, automated mission operations, and further out - mixed human-robotic teams to accomplish mission objectives. Ensuring that these capabilities are reliable, and can be developed and maintained affordably, will be challenging but critical to NASA’s exploration objectives. Proposals should clearly indicate how the technology is expected to address the challenge of reliability and affordability. Mission phases that can be addressed include not only the software life-cycle (requirement engineering through verification and validation) but also upstream activities (e.g., mission planning that incorporates trade-space for software-based capabilities) and post-deployment (e.g., new approaches for computing fault tolerance, rapid reconfiguration, and certification of mission-critical software systems).

Software engineering tools and methods that address reliability for exploration missions are sought. Projects can address technology development and maturation that provide for the following and related capabilities:

- Automated software generation methods from engineering models that are highly reliable;
- Scalable verification technology for complex mission software, e.g., model-checking technology that addresses the ‘state explosion’ problem and static-analysis technology that addresses mission-critical properties at the system level;
- Automated testing that ensures coverage targeted both at the system level and software level, such as model-based testing where test-case generation and test monitoring are done automatically from system-
level models;

- Technology for calibrating software-based simulators and test-beds against high-fidelity hardware-in-the-loop test-beds in order to achieve dependable test coverage;

- Technology for verifying and validating autonomy capabilities including intelligent execution systems, model-based diagnosis, and ISHM;

- Software-based radiation fault tolerance for computation;

- Methods and tools for development and validation of autonomic software systems (systems that are self protecting and self healing).