The challenge of the Subsonic Rotary Wing thrust of the NASA Fundamental Aeronautics program is to develop validated physics-based multidisciplinary design-analysis-optimization tools for rotorcraft, integrated with technology development, enabling rotorcraft with advanced capabilities to fly as designed for any mission. Meeting this challenge will require innovative technologies and methods, with an emphasis on integrated, multidisciplinary, first-principle computational tools specifically applicable to the unique problems of rotary wing aircraft. Examples of technologies of interest are as follows.

Propulsion/Aeromechanics Integration: Encompassing dynamic and aerodynamic integration of rotorcraft. Including advanced configurations such as rotors operating at different speeds in hover and cruise (variable speed transmission/engine), high speed rotorcraft, and heavy lift rotorcraft. Possibly including on-blade active rotor control, or flow control for hub, blades, or engine inlet.

Super-Integrated Vehicle Management System: Integrated, broadband rotorcraft control system incorporating flight control system, engine control, airframe/drive train/rotor load control, active rotor control of vibration and noise, vehicle health management, and guidance for low noise operation. Including control design methodology development.

Integrated Rotorcraft Design: Advanced light weight structural and propulsion concepts with integrated functionality to achieve reduced interior noise, vibration, and maintenance/inspection requirements. Includes gear vibration transmission through the gear/shaft/bearing/structural system and structural bonding techniques that increase fatigue life while allowing for post-buckling load capability for thin sheet sandwich construction.

Integrated Experimental Systems: Unified experimental techniques, integrating methods to enable efficient, multi-parameter, simultaneous measurements for characterizing rotorcraft behavior. Including unsteady pressure, blade deformation and position, flow field measurements, measurements that track wake vortex strength and position.

Examples of rotorcraft unique aspects of the aeronautics disciplines are as follows.

Materials and Structures: Advanced light-weight structural concepts exploiting material hybridization, selective reinforcement and material and geometric tailoring to achieve increased performance and durability while reducing weight, cabin noise and manufacturing cost, with emphasis on structural concepts for high oscillatory load environment of rotorcraft structures. Characterization of composite material properties under impact loading and...
models of impact damage. Characterization and simulation of fatigue damage in composite materials, crack/delamination growth models for spectrum loading, and high cycle fatigue thresholds, in particular for unique design and operational aspects of structures for rotor blades.

Propulsion: Research is solicited to improve rotorcraft propulsion and the ability to design and predict its performance in the following general areas:

Propulsion system (drives, engines, controls) technologies to enable variable speed rotor systems. Specific focus areas may include: enabling concepts and techniques for wide operability propulsion systems and variable speed drive systems/transmissions. Engine compressor stall control, engine flow control concepts for wide operability, cooling and secondary flow concepts for wide operability and integrated controls and modeling to support wide operability are sought. In addition, concepts for controlling and enabling variable speed drives, lightweight technologies and concepts and performance prediction capabilities for variable speed systems are sought.

Gearbox optimized propulsion systems in which both the engine and drive systems work together for improved performance. Specific concepts may include: dedicated gearbox lube systems coupled with oil-free engines; technologies to predict drive system windage losses and gear surface fatigue modeling; technologies to achieve lightweight propulsion such as composite propulsion structures and components; high power density electromechanical systems and efficient high power density propulsion concepts such as highly loaded components; engine flow control concepts; high temperature components; nano-composite components and other relevant propulsion system technologies. Propulsion system concepts must be focused on power range and operating environment required for rotorcraft.

Acoustics: Interior and exterior rotorcraft noise generation, propagation and control. Topics of interest include, but are not limited to, external noise prediction methods for manned and unmanned rotorcraft, improved acoustic propagation models, psychoacoustics analysis of rotorcraft noise, interior noise prediction methods and active/passive noise control applications for rotorcraft including engine and transmission noise reduction, advanced acoustic measurement systems for flight and wind tunnel applications, acoustic data acquisition/reduction/analysis, rotor noise reduction techniques, noise abatement flight operations. Rotor noise, including broadband, harmonic, blade-vortex interaction, high-speed impulsive; alternate tail rotor and auxiliary power concepts, rotor/tail rotor, and rotor/rotor interactional noise. Frequency range includes not only audible range, but very low frequency rotational noise (blade-passage frequency below 20 Hz) as well. Optimized active/passive concepts and noise tailoring, including rotorcraft designs that are inherently designed for lower noise as a constraint.

Aeroelasticity and Dynamics: Advanced rotorcraft hub and blade concepts for improved stability and loads capability. High-fidelity, first-principles approaches to rotorcraft stability calculation, including finite state and reduced order aerodynamic modeling approaches. Vibration reduction methods and techniques, including utilization of on-blade active control, individual blade control, or nonrotating frame active and passive means.

Aerodynamics: Airloading of rotor blades, including unsteady, compressible, viscous flows and blade-vortex interaction; stall and dynamic stall; rotor wake formation, propagation, dissipation, and interactions; rotor wake geometry. Aerodynamics of rotorcraft airframes, including rotor hubs, airframe drag, rotor-airframe-wing interactions of tiltrotors and compound configurations. Performance, including force and power of isolated rotors and of rotorcraft systems with influence of interactions between components. Behavior of rotors and rotorcraft in maneuvers and high speed flight, and advanced configurations heavy lift and slowed-rotor rotorcraft. Advanced computational fluid dynamics methods, including turbulence behavior unique to rotary wings.

Flight Dynamics and Controls: Rotorcraft flight dynamics and handling qualities. Including hover and low-speed guidance and situational awareness augmentation; autorotation control and guidance; variable-speed rotor control; low-cost low-speed air data system; improved simulation of low-visibility conditions (brownout, whiteout); control concepts for redundant effectors; affordable tactile cueing for retrofit into civil rotorcraft; study of redundancy/reliability required to achieve low-cost single-pilot IFR certification; continuously-variable transmission (current technology is focused on discrete-speed, transmission, but continuously-variable is highly desirable; flight control mitigation of structure/power train/rotor frequency overlap with primary control frequencies; proprotor control to provide helicopter-like response in heave for tiltrotor helicopter-mode operations.

Experimental Capabilities: Instrumentation and techniques for assessing scale rotor blade boundary layer state (laminar, transition, turbulent) and/or profile in simulated hover and forward flight conditions, measurement systems.
for large-field rotor wake assessment, instrumentation and techniques to measure dynamic boundary layer transition on the fixed system (fuselage) during scale model wind tunnel testing, multi-parameter temporally-resolved flow diagnostic techniques for wind tunnel testing of model-scale rotors and engine acoustic testing, fast time response pressure sensitive paints, alternatives to conventional slip rings (e.g. optical slip rings, reliable telemetry methods), high temperature and pressure sensors for engine applications, high temperature proximity sensors for turbine blade clearance measurements, sensors and/or methods for high accuracy rotorcraft velocity measurement in very low speed forward flight (