Living and functioning efficiently and safely in space and in the hypogravity of the Moon (1/6g) or Mars (3/8g), requires an understanding of the effects of micro- and hypogravity and other space-environment related factors on human physiology responses and adaptations to a unique set of imposed demands. As a result, a variety of countermeasures are needed to mitigate the deleterious changes that occur during space flight and upon subsequent exposure to reduced-gravitational environments. The ability to monitor the effectiveness of countermeasures and alterations in human physiology during space exploration missions, particularly when several countermeasures are used concurrently, is equally important.

This subtopic seeks innovative technologies in several very specific key areas. As launch costs relate directly to mass and volume, instruments and sensors must be small and lightweight with an emphasis on multi-functional capabilities. Low power consumption is a major factor, as are design enhancements to improve the operation, design reliability, and maintainability of these instruments in the environment of space and on planetary surfaces. As the efficient use of time is extremely important, innovative instrumentation setup, ease of usage, improved astronaut (patient) comfort, noninvasive sensors, and easy-to-read information displays are also very important considerations. Extended shelf-life and ambient storage conditions of consumables are also key necessities. Ability to operate in 0g, 1/6g, and 3/8g become more important as we march towards human Moon and Mars missions.

Exercise and Related Hardware

Miniaturized exercise hardware (treadmill or resistance exercise); physiological monitoring devices; and metabolic gas (carbon dioxide, oxygen) analysis systems for use with exercise and miniaturized interactive feedback and entertainment systems. A tool or toolkit should simulate and visualize the exercise device design and performance. A comprehensive, scaled 3D/virtual human model interface would be valuable to show biomechanical and kinetic effects of the exercise device. Relative physiological data from anthropometry to stress/fatigue to trauma/insult onset should be targeted.

Noninvasive Pharmacotherapy and Monitoring

Development of innovative technologies resulting in noninvasive methods for diagnosis, treatment, and therapeutic drug monitoring is needed to facilitate effective pharmacotherapy of humans in space. Many questions remain about the effectiveness of pharmaceuticals in micro- and hypogravity environments, which may interfere with their
activity by sensitizing or desensitizing the crew member or interfering in other ways with the desired physiological
effect. Micro-encapsulation of drugs and development of novel drug delivery systems under micro- and hypogravity
conditions. Devices for continual monitoring of physiology during pharmacotherapy would also be advantageous to
ensure that on-orbit expression of therapies relates to on-earth histories.

Instrumentation for Noninvasive Measurement of Intracranial Pressure During Space Flight

Abrupt transitions between differing gravitational environments have profound physiologic impacts on human space
travelers. For instance, immediately following insertion of the spacecraft into Earth orbit, cephalad fluid shifting
occurs. Over the next several days, all crewmembers onboard suffer from what has been termed Space Adaptation
Syndrome (SAS) that varies in severity from person to person. The prevailing theory for the appearance of the
constellation of symptoms (headache, malaise, vomiting, vertigo, etc.) which comprise this syndrome implicates a
"sensory conflict" in information provided by the adapting vestibular system and by visual inputs. Another theory
implicates the increased intracranial pressure (ICP) that likely accompanies the cephalad fluid shifts in the genesis
of SAS. Additionally, decreased ICP following return to Earth's gravity may explain symptoms experienced by many
crewmembers. Thus, novel approaches to noninvasive measurement of ICP are needed to determine the etiology
and pathogenesis of the untoward physiologic effects that plague human space travelers during abrupt transitions
between different gravitational environments. A more complete understanding of these phenomena will lead to
better prevention and treatment modalities that will in turn decrease risks to the health and performance of
crewmembers during transitional periods of both high to low and low to high gravity environments.

Noninvasive Technology to Assess Bone Micro- and Macroarchitecture

A complete assessment of bone strength will better monitor life-time skeletal integrity and will generate data critical
for developing probability fracture risk models in younger crew members. Novel technology for non-invasive
assessments of "bone quality" indices such as microarchitecture, macroarchitecture and trabecular bone mineral
density (BMD).