This subtopic supports the development of advanced instruments and instrument technologies to enable or enhance scientific investigations on future planetary missions. New measurement concepts, advances in existing instrument concepts, and advances in critical components are all of interest. Proposers are strongly encouraged to relate their proposed technology development to future planetary exploration goals. These goals include geochemical, geophysical and astrobiological objectives.

Astrobiology includes the study of the origin, evolution, and distribution of life in the universe. New technologies are required to enable the search for extant or extinct life elsewhere in the solar system, to obtain an organic history of planetary bodies, to discover and explore water sources elsewhere in the solar system, and to detect microorganisms and biologically important molecular structures within complex chemical mixtures. Biomarkers produced by microbial communities are profoundly affected by internal biogeochemical cycling. The small spatial scales at which these biogeochemical processes operate necessitate measurements made using microsensors. The search for life on other planetary bodies will also require systems capable of moving and deploying instruments across, and through, varied terrain to access biologically important environments.

Instruments for both remote sensing and in situ investigations are required for NASA's planned and potential solar system exploration missions. Instruments are required for the characterization of the atmosphere, surface, and subsurface regions of planets, satellites, and small bodies. These instruments may be deployed for remote sensing, on orbital or flyby spacecraft, or for in situ measurements, on surface landers and rovers, subsurface penetrators, and airborne platforms. In situ instruments cover spatial scales from surface reconnaissance to microscopic investigations. These instruments must be capable of withstanding operation in space and planetary environmental extremes, which include temperature, pressure, radiation, and impact stresses.

Examples of instruments that will meet the goals include, but are not limited to, the following:

- Instrumentation for definitive chemical, mineralogy, and isotopic analysis of surface materials: soils, dusts, rocks, liquids, and ices at all spatial scales, from planetary mapping to microscopic investigation. Examples
include advanced techniques in reflectance spectroscopy, wet chemistry, laser-induced breakdown
spectrometers, water and ice detectors, novel gas chromatograph and mass spectrometry, and age-dating
systems;

- Instrumentation for the assessment of surface terrain and features. Examples include lidar systems and
 advanced imaging systems;

- Geophysical sensing systems to determine the near-surface and subsurface structure, textures, bulk
 components, and composition, such as seismic sensors, porosity measurement devices, permeameters,
 and surface penetrating radars;

- Instrumentation focused on the identification and characterization of biomarkers of extinct or extant life,
 such as prebiotic molecules, complex organic molecules, biomolecules, or biominerals;

- Instrumentation for the chemical and isotopic analysis of planetary atmospheres;

- Advanced detectors for solar absorption spectrometry. One example is a detector that is fast and linear,
 i.e., does not saturate under high photon fluxes;

- Environmental sensing systems, such as meteorological sensors, humidity sensors, wind and particle size
 distribution sensors, and sounders for atmospheric profiling;

- Particles and fields measurements, such as magnetometers, and electric field monitors; and

- Enabling instrument component and support technologies, such as laser sources, miniaturized pumps,
 sample inlet systems, valves, integrated bulk sample handling and processing systems, and fluidic
 technologies for sample preparation.

Instruments specific to astrobiology include:

- For Mars or Venus exploration, technologies that (using X-ray, neutron, ultrasonic, and other types of
 tomography) would enable a noninvasive, nondestructive analysis of biomarkers inside rocks and ice to
 depths 10 - 20 cm with spatial resolutions of 2 - 10 microns;

- Technologies that would enable the aseptic acquisition of samples under conditions of extreme
 environments;

- For Europa and Enceladus exploration, technologies to enable the penetration of ice and/or access to
 subsurface vents are required;

- High sensitivity (femtomole or better), high-resolution methods applicable to all biologically relevant classes
 of compounds for separation of complex mixtures into individual components;

- High sensitivity (femtomole or better) characterization of molecular structure, chirality, and isotopic
 composition of biogenic elements (H, C, N, O, S) embodied within individual compounds and structures;

- Biotechnology-determining mutation rates and genetic stability in a variety of organisms as well as
 accurately determining protein regulation changes in microgravity and radiation environments;

- Automated chemical analytical instrumentation for determining gross metabolic characteristics of individual
 organisms and ecologies as well as chemical composition of environments;

- High-resolution, high-sensitivity (femtomole or better) methods for the isolation and characterization of
 nucleic acids (DNA and RNA) from a variety of organic and inorganic matrices; and
• Microscopic techniques and technologies to study soil cores, microbial communities, pollen samples, etc., in a laboratory environment for the detailed spectroscopic analysis relevant to evolution as a function of climate changes.