The Crew Exploration Vehicle (CEV) will first be used for transporting crew and cargo to the Space Station and
later for the human exploration of the Moon and Mars. The Thermal Protection System (TPS) for the CEV will have
to protect the crew and cargo from entry heating at entry velocities of approximately 8 km/s for Space Station
missions, 11 km/s for lunar return missions, up to 8 km/s for Martian aerocapture and entry, and between 12 - 15
km/s for Martian return missions. Ablative TPS is an enabling technology for all CEV superorbital reentry missions.

Ablation Modeling

The heat shield for CEV will employ a TPS material that pyrolyzes and ablates at high temperature for mass-
efficient rejection of the aerothermal heat load. Pyrolysis is an internal decomposition of the solid that releases
gaseous species, whereas ablation is a combination of processes that consume heat shield surface material
(including chemical reactions, melting, and vaporization). For the design and sizing of TPS materials, it is
imperative to have reliable simulation tools that can compute surface recession rate, in-depth pyrolysis, and internal
temperature histories under general heating conditions. In addition, lunar and Martian reentry environment heating
will consist of significant radiation from the shock layer. The models need to include the effect of not only
convective but radiative heating as well.

Therefore, advances are sought in modeling of radiation, gas surface interactions, ablation mechanisms, pyrolysis,
and other processes such as coking and charring. Specifically for charring, advances are sought in the
development of a low density charring ablator model to give insight into how conductivity changes as function of
temperature and pressure for the virgin material and for the material as it pyrolyzes.

Instrumentation

TPS sensors and experimental diagnostic tools are required to provide traceability of TPS sizing tools, design, and
material performance. Traceability will lead to higher fidelity design tools, which in turn will lead to risk reduction
and decreased heat shield mass on missions requiring atmospheric aerocapture or entry/reentry. Decreasing heat
shield mass will enable certain missions that are not otherwise feasible and directly increase payload. Heat flux
sensors and surface recession diagnostic tools are essential to advancing the state of TPS traceability for material
modeling and aerothermal simulation.
Advances in the understanding of how heat flux sensor performance changes upon integration of the sensors into TPS materials in ablative environments through simulation or experimental investigation are sought. Specifically, the following list of sensor materials is of primary interest:

- Type K, C, R, and S thermocouples
- Sapphire windows
- Inconel superalloys
- Pure platinum
- Teflon

For surface recession, advances in optical methods (photometrics/tomography) are sought.

**Non-destructive Testing Techniques and Novel Techniques for Material Characterization**

The CEV heat shield will be the largest ever built. During manufacturing and integration, it will be necessary to understand the variability in material properties, to determine voids and inclusions, to assess bondline integrity, and to ensure that the established flight heat shield requirements are met.

For this purpose, advances in NDE and proposals of novel techniques for material characterization applicable for ablative TPS are sought.

**Ablation Materials Development**

Early NASA missions employed new ablative TPS materials that were tailored to each specific entry environment. However, after Mars Viking, NASA-sponsored ablative TPS development essentially ceased as the research focus shifted to reusable TPS in support of the Space Shuttle. For example, the Pioneer Venus (1978) and Galileo (1995) missions employed carbon phenolic TPS material that had previously been developed by the United States Air Force for ballistic missile applications. Over the past 40 years, NASA has adopted a risk averse philosophy relative to TPS, i.e. use what was used before since it has been flight-qualified. For Mars Direct Return, the entry velocities will be in the range of 12-15 km/s. Heritage carbon phenolic can satisfy Mars Return requirements however the TPS mass fraction would be less than optimal. Thus, advances toward new reliable and efficient TPS materials are desired. Similarly, development of adhesives, joints, penetrations, and seals are of equal importance and advances are sought.