NASA SBIR 2004 Phase I Solicitation

A2.07 Revolutionary Flight Concepts

Lead Center: AFRC

This subtopic solicits innovative flight test experiments that demonstrate breakthrough vehicle or system concepts, technologies, and operations in the real flight environment. The emphasis of this subtopic is the feasibility, development, and maturation of advanced flight research experiments that demonstrate advanced or revolutionary methodologies, technologies, and concepts. It seeks advanced flight techniques, operations, and experiments that promise significant leaps in vehicle performance, operation, safety, cost, and capability; and may require a demonstration or validation in an actual flight environment to fully characterize or validate it.

The scope of this subtopic is broad and includes advanced flight experiments that accelerate the understanding, research, and development of advanced technologies and unconventional operational concepts. Examples extend to (but are not limited to) such things as inflatable aero-structures (new designs or innovative applications, new manufacturing methods, new materials, new in-flight inflation methods, and new methods for analysis of inflation dynamics), innovative control surface effectors (micro-surfaces, embedded boundary-layer control effectors, micro-actuators), innovative engine designs for UAV aircraft, alternative engines/motors/concepts, alternative fuels research (hydrocarbon, hydrogen, or regenerative), sonic boom reduction, noise reduction for Conventional Take-off and Landing/Short Take-off and Landing (CTOL/STOL) aircraft and engines, advanced mass transportation concepts, retrofit threat detection capabilities for civil transports, damage mitigation concepts, streamlining airport operations concepts, retrofitting existing airports for next generation airliners, alternative external vision systems, shroudless launch of aerodynamic shapes on the front of ELVs, aerodynamic systems optimization for planetary aircraft (Venus, Mars, Io, and/or Titan), flexible system stability derivative identification, innovative approaches to thermal protection that minimize aerodynamic performance degradation, innovative approaches to structures, stability, control, and aerodynamics integration schemes, and innovative approaches to incorporation of UAV operations into commercial airspace. This subtopic is intended to advance and demonstrate revolutionary concepts and is not intended to support evolutionary steps required in normal product development. Proposals should emphasize the need of flight testing a concept or technology as a necessary means of verifying or proving its worth; emphasis should also be given to multidisciplinary integration of advanced flight systems. The benefit of this effort will ultimately be more efficient aerospace vehicles, increased flight safety (particularly during flight research), and an increased understanding of the complex interactions between the vehicle or technology concept and the flight environment.