NASA SBIR 2022-I Solicitation

Proposal Summary

Proposal Information

Proposal Number:
22-1- Z2.01-1749
Subtopic Title:
Spacecraft Thermal Management
Proposal Title:
Hot End Thermal Management System for Nuclear Electric Propulsion

Small Business Concern

   
Firm:
          
Advanced Cooling Technologies, Inc.
          
   
Address:
          
1046 New Holland Avenue, Lancaster, PA 17601
          
   
Phone:
          
(717) 205-0628                                                                                                                                                                                
          

Principal Investigator:

   
Name:
          
Jeffrey Diebold
          
   
E-mail:
          
jeffrey.diebold@1-act.com
          
   
Address:
          
1046 New Holland Avenue, PA 17601 - 5688
          
   
Phone:
          
(717) 205-0625                                                                                                                                                                                
          

Business Official:

   
Name:
          
William Anderson
          
   
E-mail:
          
Bill.Anderson@1-act.com
          
   
Address:
          
1046 New Holland Avenue, PA 17601 - 5688
          
   
Phone:
          
(717) 205-0602                                                                                                                                                                                
          

Summary Details:

   
Estimated Technology Readiness Level (TRL) :                                                                                                                                                          
Begin: 3
End: 4
          
          
     
Technical Abstract (Limit 2000 characters, approximately 200 words):

Nuclear electric propulsion systems provide a variety of benefits including increased science payload, reduced flight times and longer mission lifetimes. These advantages enable a wide range of missions such as manned missions to Mars, unmanned missions to the outer planets and deep-space. The thermal management system linking the reactor to the hot end of the power conversion system must be efficient, lightweight and reliable. These requirements become more challenging as the total power scales to the megawatt level.

In this SBIR program, Advanced Cooling Technologies and USNC-Tech will develop a highly reliable, efficient and lightweight thermal management system for the hot end of the power generation system for nuclear electric propulsion. A high-power two-phase heat transfer system will be used to transport thermal energy, at the megawatt scale, to the hot end of the power conversion unit. The proposed system is passive and highly reliable with built-in redundancy.

          
          
     
Potential NASA Applications (Limit 1500 characters, approximately 150 words):

The thermal management technology proposed here is relevant to several areas of NASA’s Technology Roadmap, including “Power for In-Space Propulsion”, “Fission Space Power and Energy Storage” and “Heat Transport for Thermal Control Systems”. The system will benefit many space-based fission power systems such as nuclear electric propulsion and power generation on the lunar and Martian surface.

          
          
     
Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words):

The proposed system is capable of transporting a significant amount of thermal energy from a nuclear reactor to a power conversion system. In addition to space-based applications, the thermal management system is relevant to small modular and micro nuclear reactors. Small reactors have several advantages including reduced capital investment, reduced construction time and scalability.

          
          
     
Duration:     6
          
          

Form Generated on 05/25/2022 15:43:01