NASA SBIR 2022-I Solicitation

Proposal Summary

Proposal Information

Proposal Number:
22-1- S17.04-1526
Subtopic Title:
Application of Artificial Intelligence for Science Modeling and Instrumentation
Proposal Title:
Improving Data Assimilation in Numerical Weather Prediction of Winter Cyclones using Artificial Intelligence and Machine Learning

Small Business Concern

   
Firm:
          
CFD Research Corporation
          
   
Address:
          
6820 Moquin Drive NorthWest, Huntsville, AL 35806
          
   
Phone:
          
(256) 715-6918                                                                                                                                                                                
          

Principal Investigator:

   
Name:
          
Mr. Daniel D'Amico
          
   
E-mail:
          
daniel.damico@cfd-research.com
          
   
Address:
          
701 McMillian Way Northwest, Suite D, AL 35806 - 2923
          
   
Phone:
          
(256) 726-4800                                                                                                                                                                                
          

Business Official:

   
Name:
          
Silvia Harvey
          
   
E-mail:
          
proposals-contracts@cfd-research.com
          
   
Address:
          
701 McMillian Way Northwest, Suite D, AL 35806 - 2923
          
   
Phone:
          
(256) 715-6918                                                                                                                                                                                
          

Summary Details:

   
Estimated Technology Readiness Level (TRL) :                                                                                                                                                          
Begin: 2
End: 3
          
          
     
Technical Abstract (Limit 2000 characters, approximately 200 words):

Operational numerical weather prediction (NWP) models frequently struggle with track errors for wintertime cyclones which can lead to life threatening impacts and economic disruptions. Data assimilation is an advanced statistical method for preparing relatively low-resolution, high-fidelity sensor information for these NWP models. This method produces a first-guess field that serves as an estimation of the current state of the atmosphere in operational NWP models, which ultimately produce weather forecasts that are essential tools for forecasters. Despite many advances in the field, shortcomings are still very apparent and NWP models still have prediction issues with common weather occurrences, including those that produce extreme weather. The very large data volumes and computational expense of imperfect data assimilation requires unique solutions to improve NWP predictions. With the advance of machine learning (ML) and artificial intelligence (AI), along with other techniques for processing large volumes of data, the possibilities for improving data assimilation are numerous. This proposed effort will take advantage of recent advances in AI/ML in order to generate better initial conditions for NWP models, which will contribute to improved forecasts of extreme events. This effort will begin by gathering large amounts of data prior to and during major winter weather events to create training datasets for proper orthogonal decomposition (POD) reconstruction which will provide an AI/ML approximation of the natural state based on the data collected. We plan to run NWP models using both traditional data assimilation and with POD dynamic modeling for winter cyclones. The new AI/ML technique should present new approaches for future NASA model development and NASA computational groups.

          
          
     
Potential NASA Applications (Limit 1500 characters, approximately 150 words):

The proposed research will leverage AI/ML advances as a method to improve data assimilation in Earth systems models, specifically weather models. This work has broad applications for developing NASA climate and weather models, along with applications to the development of the NOAA Unified Forecast System, which will be the state of the science over the next decade. This work has broad applications for several NASA groups, including GMAO, ESTO/AIST, CISTO, and NCCS.

          
          
     
Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words):

Numerous scientific organizations, national laboratories, and universities are aiming to bring together AI/ML talent with atmospheric and climate scientists, and this work is one effort that could provide proof-of-concept. The development of the UFS by NOAA would also benefit from improvements in data assimilation as they continue to develop state of the art tools for Earth systems prediction.

          
          
     
Duration:     6
          
          

Form Generated on 05/25/2022 15:33:45