NASA STTR 2021-I Solicitation

Proposal Summary


   
Proposal Number:          21-1- T12.06-2998
          
          
   
Subtopic Title:
      Extensible Modeling of Additive Manufacturing Processes
          
          
   
Proposal Title:
      Predictive Thermal Simulation for Laser Powder Bed Fusion
          
          

Small Business Concern

   
Firm:
          
Open Additive, LLC
          
   
Address:
          
2750 Indian Ripple, Rd., Ste. A, Beavercreek, OH 45440 - 3638
          
   
Phone:
          
(937) 306-6140                                                                                                                                                                                
          

Research Institution:

   
Name:
          
University of Pittsburgh-Pittsburgh Campus
          
   
Address:
          
3420 Forbes Avenue, PA 15260 -
          
   
Phone:
          
(412) 624-2052                                                                                                                                                                                
          

Principal Investigator:

   
Name:
          
Dr. Christopher Barrett
          
   
E-mail:
          
cbarrett@openadditive.com
          
   
Address:
          
2750 Indian Ripple, Rd., Ste. A, OH 45440 - 3638
          
   
Phone:
          
(937) 306-6737                                                                                                                                                                                
          

Business Official:

   
Name:
          
Dr. Randall Pollak
          
   
E-mail:
          
tpollak@openadditive.com
          
   
Address:
          
2750 Indian Ripple, Rd., Ste. A, OH 45440 - 3638
          
   
Phone:
          
(937) 306-6161                                                                                                                                                                                
          

Summary Details:

   
Estimated Technology Readiness Level (TRL) :                                                                                                                                                          
Begin: 2
End: 3
          
          
     
Technical Abstract (Limit 2000 characters, approximately 200 words):

The proposed innovation for this work is an efficient simulation software combined with in-situ sensing capability for use with laser powder bed fusion (LPBF) machines to detect defects before initiating the build; thus allowing abatement of the defects before they are materially created. The predictive thermal simulation capabilities developed by the University of Pittsburgh, to be combined with Open Additive's multi-sensor data collection and analytics suite (AMSENSE®) and transitioned into a commercial software framework, will provide a comprehensive solution for the development, validation, and transition of quality assurance strategies for additively manufactured metal parts for aerospace applications. The resulting toolset will provide an efficient simulate-before-build approach that will enable the ability to print low volume, highly critical complex geometric parts by LPBF at reduced timelines and cost compared to the current state of the art.

          
          
     
Potential NASA Applications (Limit 1500 characters, approximately 150 words):

The proposed simulator in combination with AMSENSE sensing and analytics capabilities will provide a robust prediction and monitoring solution for low volume, highly critical parts. The effort will provide a method tosimulate-before-build for complex novel geometries to identify ideal laser processing parameters. This will accelerate the qualification of laser powder bed fusion (LPBF) processes and parts for use on NASA mission projects such as the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) and other endeavors.

          
          
     
Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words):

The proposed simulation tool combined with in-situ sensing/analytics will have wide applicability to defense and industrial needs for additively manufactured parts to support modernization and systems sustainment. The toolset will provide an integrated approach to reduce the costs and lead times involved in AM applications development, thus paving way for more materials and complex geometries.

          
          
     
Duration:     13
          
          

Form Generated on 03/23/2021 10:57:46