NASA STTR 2021-I Solicitation

Proposal Summary


   
Proposal Number:          21-1- T12.05-3097
          
          
   
Subtopic Title:
      Use of Additive Manufacturing for Thermal Protection Systems
          
          
   
Proposal Title:
      3D Printing of High Temperature Thermoset Foams for Space Vehicular Thermal Protection Systems
          
          

Small Business Concern

   
Firm:
          
RE3D Inc
          
   
Address:
          
1100 Hercules Ave, Suite 220, Houston, TX 77058 - 2758
          
   
Phone:
          
(512) 730-0033                                                                                                                                                                                
          

Research Institution:

   
Name:
          
The University of Tennessee-Knoxville
          
   
Address:
          
201 Dougherty Engineering Building 1512 Middle Drive, TN 37996 -
          
   
Phone:
          
(865) 974-8006                                                                                                                                                                                
          

Principal Investigator:

   
Name:
          
Matthew Fiedler
          
   
E-mail:
          
matthew@re3d.org
          
   
Address:
          
1100 Hercules Ave, Suite 220, TX 77058 - 2758
          
   
Phone:
          
(832) 305-5293                                                                                                                                                                                
          

Business Official:

   
Name:
          
Michael Strong
          
   
E-mail:
          
strong@re3d.org
          
   
Address:
          
1100 Hercules Ave, Suite 220, TX 77058 - 2758
          
   
Phone:
          
(732) 580-8754                                                                                                                                                                                
          

Summary Details:

   
Estimated Technology Readiness Level (TRL) :                                                                                                                                                          
Begin: 2
End: 4
          
          
     
Technical Abstract (Limit 2000 characters, approximately 200 words):

We propose to create an open-source modification of our commercially available, affordable, industrial 3D printer, and in conjunction develop printable, high temperature hybrid thermoset (HT2) materials in partnership with the University of Tennessee at Knoxville (UTK) during this Phase 1 NASA/STTR.

In addition to additive manufacturing’s (AM) benefits of low-cost prototyping, efficient low volume manufacturing, and unparalleled ability to create complex geometries, utilizing the Gigabot platform offers scalability as research progresses to enable affordable and large-scale printing of TPS. The methodology proposed will have the potential of expanding the thermoset extrusion material library and significantly decrease the time spent on previous TPS systems.

In collaboration between re:3D and UTK, HT2 Materials will be developed, and 3D printed with the target application of TPS for space vehicles. The TPS materials and methods will allow for optimum performance of extreme materials, making it possible to print them in more complex and contoured geometries to enable maximum heat shielding performance in space vehicular applications in launch and recovery.  This will involve the formulation of a three-phase, low-density, epoxy-polysilazane based syntactic foam, including high-alumina cenospheres and nanoclay reinforcement. The optimum material formulation will be paired with the CNC controlled movement of an extrusion head to enable tailored density and porosity control coupled with long pot life and several curing options to meet post-processing constraints. Various geometries will then be tested to demonstrate the optimized 3D printing parameters and resolution. The various parts that will be designed and fabricated will then be tested for their thermo-mechanical properties, extreme heat and flame resistance, and charring and ablation properties.

          
          
     
Potential NASA Applications (Limit 1500 characters, approximately 150 words):

The development of a variety of termoset materials capable of withstanding the rigors of space for use in TPS creation. The ability to use open-source additive manufacturing tools for the creation of tool-path algorithms, for printing directly onto the face of three dimensional objects for the creation of TPS. Time and Money savings from using additive manufacturing for TPS creation. Scalability of the solution as the project progresses to incorporate large build/surface areas.

          
          
     
Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words):

Private-commercial space industry is growing exponentially, and TPS creation through Additive Manufacturing, would prove to be useful for customers in this sector. TPS creation could be useful to other space agencies and DoD partners. There are also a whole host of opportunities to learn more within the R&D effort for technologies to be incorporated into future iterations of re:3D's 3D printers.

          
          
     
Duration:     13
          
          

Form Generated on 03/23/2021 10:49:48