NASA SBIR 2021-II Solicitation

Proposal Summary

Proposal Information

Proposal Number:
21-2- Z1.06-1965
Phase 1 Contract #:
80NSSC21C0162
Subtopic Title:
Radiation-Tolerant High-Voltage, High-Power Electronics
Proposal Title:
High-Voltage Gallium Oxide Devices for Space Power Electronics - 20027

Small Business Concern

   
Firm:
          
CFD Research Corporation
          
   
Address:
          
701 McMillian Way Northwest, Suite D, Huntsville, AL 35806
          
   
Phone:
          
(256) 726-4800                                                                                                                                                                                
          

Principal Investigator:

   
Name:
          
Partha Chakraborty
          
   
E-mail:
          
partha.chakraborty@cfdrc.com
          
   
Address:
          
701 McMillian Way Northwest, Suite D, AL 35806 - 2923
          
   
Phone:
          
(256) 726-4800                                                                                                                                                                                
          

Business Official:

   
Name:
          
Silvia Harvey
          
   
E-mail:
          
proposals-contracts@cfd-research.com
          
   
Address:
          
701 McMillian Way Northwest, Suite D, AL 35806 - 2923
          
   
Phone:
          
(256) 726-4858                                                                                                                                                                                
          

Summary Details:

   
Estimated Technology Readiness Level (TRL) :                                                                                                                                                          
Begin: 3
End: 4
          
          
     
Technical Abstract (Limit 2000 characters, approximately 200 words):

Future NASA science and exploration missions require significant performance improvements over the state-of-the-art in Power Management and Distribution (PMAD) systems. Space qualified, high voltage power electronics can lead to higher efficiency and significant SWaP-C advantage at the system architecture level and serve as an enabling technology for diverse applications. Gallium Oxide (Ga2O3) is an ultra-wide bandgap semiconductor technology with superior electronic properties for high-voltage power applications. Ga2O3 devices offer higher temperature operation, lower on-resistance, higher breakdown voltages, and higher power conversion efficiency than Silicon power devices. However, their performance in the space environment, including high-energy radiation and wide temperature fluctuations, is largely unknown. A thorough characterization and design effort is essential for advancing this technology to meeting NASA requirements. CFDRC, in collaboration with the University at Buffalo (UB), Vanderbilt University, and KYMA Technologies, will utilize a proven experimental and physics-based modeling approach to address this challenge. In Phase I, we performed irradiation testing for single event effects (SEEs) of β-Ga2O3 power MOSFETs from UB (up to 8 kV rating), generated device response data, and identified potential handling/testing challenges with this technology. TCAD modeling of SEEs was performed for insight into physical mechanisms. In Phase II, we will perform additional heavy-ion testing as a function of temperature and bias. Extensive TCAD-based modeling will be performed to identify radiation and temperature dependent mechanisms, and device structure/process modifications for improved radiation tolerance. Promising solutions will be prototyped, tested, and delivered to NASA, along with a technology development roadmap. Participation by KYMA in Phase II and beyond will ensure manufacturability of the space-qualified, β-Ga2O3 power MOSFET technology.

 

          
          
     
Potential NASA Applications (Limit 1500 characters, approximately 150 words):

Radiation tolerant, high voltage/high temperature Ga2O3 power electronics is an enabling technology for power management and distribution in spacecrafts and scientific instruments. It directly supports NASA goals for Lunar and Planetary Surface PMAD and the Kilopower program. It also benefits Remote Sensing Instruments and Sensors related to NASA Science and Exploration missions. The modeling and analysis tools for electronic qualification will be a Cross-Cutting Technology for all NASA missions requiring high voltage power electronics.

          
          
     
Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words):

Radiation tolerant Ga2O3 power electronics are applicable in DoD space systems (communication, surveillance, missile defense), commercial satellites, and nuclear power systems. High-voltage/high-temperature tolerant Ga2O3 power devices have applications in power conditioning systems (avionics and electric ships), solid-state drivers for heavy electric motors, PMAD and control electronics.

 

          
          
     
Duration:     24
          
          

Form Generated on 02/18/2022 18:03:07