NASA SBIR 2021-I Solicitation

Proposal Summary


   
Proposal Number:          21-1- Z1.05-2004
          
          
   
Subtopic Title:
      Lunar and Planetary Surface Power Management and Distribution
          
          
   
Proposal Title:
      Dual Output Bidirectional Integrated DCDC Isolated SiC-based Power Converter for Space Applications
          
          

Small Business Concern

   
Firm:
          
CoolCAD Electronics, LLC
          
   
Address:
          
7101 Poplar Avenue, Takoma Park, MD 20912
          
   
Phone:
          
(301) 405-3363                                                                                                                                                                                
          

Principal Investigator:

   
Name:
          
Akin Akturk
          
   
E-mail:
          
akin.akturk@coolcadelectronics.com
          
   
Address:
          
7101 Poplar Avenue, MD 20912 - 4671
          
   
Phone:
          
(301) 405-3363                                                                                                                                                                                
          

Business Official:

   
Name:
          
Lisa Sachar
          
   
E-mail:
          
ljsachar@gmail.com
          
   
Address:
          
7101 Poplar Avenue, MD 20912 - 4671
          
   
Phone:
          
(301) 405-3363                                                                                                                                                                                
          

Summary Details:

   
Estimated Technology Readiness Level (TRL) :                                                                                                                                                          
Begin: 3
End: 4
          
          
     
Technical Abstract (Limit 2000 characters, approximately 200 words):

In the Phase I effort of this this work, we will conceptualize, design, fabricate and validate through simulation and preliminary experiments of a 8 kW-rated silicon carbide (SiC) based galvanically isolated dual-output bi-directional DC-DC power converter circuit that can operate at a wide range of temperatures in space environments. Moreover, the design comes with a high degree of modularity and configurability of a proposed three-port network, where (a) multiple power converter units can be paralleled on the output side to scale up the power level, (b) planar magnetics technology is employed to enhance the power density and (c) power flow can be directed between any two specific ports while being able to bypass the third port. Furthermore, we plan to fabricate radiation hardened versions of the SiC power devices with high resiliency to heavy ion strikes. Thus, the outcomes of the proposed device technology and its demonstration with the proposed power converter pave the way for advanced, more efficient and lightweight space power systems.

The proposed power converter technology: will lead (a) to reducing the weight and volume (both by ~40%) of onboard power electronics through integrating two isolated DC-DC power stages with a projected power density of 1.3kW/L and 2.6kW/kg, (b) incorporating a unique control strategy to enable simultaneous regulated power flow toward both the output ports, while maximizing the converter efficiency not only at full load but also at light loads, (c) bidirectional enabling both DC bus-to-battery (D2B) charging and battery-to-other DC loads (B2D) discharging capabilities, (d) maintaining a rated load efficiency over 96.5% (~2.5% greater than state-of-the-art) across a wide operating ambient temperature range from -70C to 150C, and (e) employing a robust structure of power converter, where the implementation of gate driver and control circuits would be simple, hence leading to improved reliability of the system.

          
          
     
Potential NASA Applications (Limit 1500 characters, approximately 150 words):

Harsh environment SiC power converters have wide applications in (a) spacecraft power management, (b) DC distribution systems in Venus/Mercury/Mars explorers, (c) motor drives, inverters and power supply derivatives in Space Station, satellite power system, and (d) motor drives in 'more electric' technology applied to aircraft generators and reusable launch vehicles. SiC technology also finds unique applications in harsh environment CMOS-based control, driver integrated circuits and sensors, where Si technology has its limitations.

          
          
     
Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words):

Applications of harsh environment SiC power electronics include (a) power management and distribution system in ground/naval/air military vehicles, (b) automotive engine control electronics, (c) electrical actuator and motors drives in commercial aircraft jet engines, (d) compressor in geothermal, oil & gas extraction, (e) deep-well drilling telemetry module and electric actuation in gas turbines.

          
          
     
Duration:     6
          
          

Form Generated on 04/06/2021 12:18:52