This SBIR Phase I project aims to continue the manufacturing optimization of the mirror quality for both of our PZT stack actuator DMs and our next-generation single-crystal PMN-PT stack actuator DMs. With verified DM performance in terms of key performance parameters such as stroke, leakage current, speed, influence function as well as the validity of the superposition law in the DM control, the innovation further strives to scaling up the manufacturing process and tooling capability to ultimately improve the mirror quality of large-actuator-count DMs in order to make them worthy of being considered for future NASA's flagship missions. The innovation leverages on our experience in developing stack actuator DMs as well as ASIC-based driver electronics, enabling the next-generation DM systems (with compact and high-resolution driver electronics) that are also featured with: reduced number of wires from thousands to several tens, reduction of the power dissipation by two (2) orders of magnitude, shrinking of the form factor (weight/size) of the DM driver electronics by up to two (2) orders of magnitude, and reducing the DM cost by about 5 times. With both DM and the driver ASIC scalable to 96x96, 128x128 or larger format, the innovation holds promise of filling the NASA Technology Gap on DM and associating driver electronics connectors/cables as listed in the recently released Exoplanet Exploration Program Technology Plan Appendix.
With both DM and the driver ASIC scalable to 96x96, 128x128 or larger format, the innovation holds promise of filling the NASA Technology Gap (Gap ID: CG-3) on DM and associating driver electronics connectors/cables of the recently released Exoplanet Exploration Program Technology Plan Appendix 2018, and will be able to serve future exo-Earth flagship missions such as HabEx, Exo-C probe, and LUVOIR by providing higher actuator count DM-ASIC systems with less cables, low mass, volume and power. .
Commercial markets for these systems include retinal imagers, supernormal human vision systems, and amateur telescopes. The research is also expected to lead to a family of compact, low-cost, high performance spatial light modulators for direct retinal display, head mount display, and large-screen projection display applications (digital cinema).