A great challenge with power management is the way power is transmitted to other devices. Traditional space systems operate through nuclear, solar, or tethered power mechanisms that require great complexity and process to qualify and operate. Tethered systems are hindered tremendously by mechanically mated components that are prone to regolith incursion and that require large robotically generated forces for interconnection. Furthermore, astronauts suffer from limited suit dexterity to manipulate and manage such systems. Nuclear powered systems require intensive handling procedures, and in many cases, presidential authority to launch—greatly increasing the cost and schedule of such missions. Solar powered systems require continuous access to the Sun and must follow predicated operational plans to maximize sunlight exposure and limit system duty cycles, ultimately constraining system performance. A wireless charging system mitigates these challenges for standalone systems that are unable to generate power independently through such traditional methods. Furthermore, a product such as this could have great utility not only on the Moon, but also in critical space applications on Mars, in orbit, and beyond.
The proposing team of Astrobotic and WiBotic, are developing a charging solution that can satisfy these needs. The performance and specifications were initially targeted for multi-kW applications, but through discussions with customers and NASA we have learned a 400 W product is more favorable. The targeted specifications are as follows:
There are several applications that necessitate proximity chargers in space. In relation to the Moon, these activities include supporting marsupial roving missions, enabling robotic systems that do not contain onboard nuclear or solar power generators, charging toolkits on crewed lunar terrain vehicles, and powering the heaters of critical devices to survive the lunar night. Near-field wireless power transmitters are important tools to reduce regolith incursion in mechanically mated systems and static joints.
Robotic systems are increasingly utilized in warehouses, energy/utility plants, construction sites, mines, and for last mile delivery applications. Underwater robotic systems enable ocean research for aquaculture, ocean mapping and maritime trade security inspections. All of these systems are battery powered and require recharging to maintain a high level of reliability and automation.