NASA STTR 2019-II Solicitation

Proposal Summary

Proposal Information

Proposal Number:
19-2- T15.01-2847
Phase 1 Contract #:
Subtopic Title:
Distributed Electric Propulsion (DEP) Vehicles toward Urban Air Mobility (UAM) and Regional Airliners
Proposal Title:
Next Generation Distributed Electric Propulsion Urban Air Mobility Aircraft Analysis/Design Tools
Continuum Dynamics, Inc.
34 Lexington Avenue
Ewing NJ  08618 - 2302
Phone: (609) 538-0444
Georgia Tech Research Corporation (GTRC)
926 Dalney St NW
GA  30332 - 0420
Phone: (404) 385-2080

Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)

Dr. Glen Whitehouse
34 Lexington Avenue Ewing, NJ 08618 - 2302
(609) 538-0444

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)

Melissa Kinney
34 Lexington Avenue Ewing, NJ 08618 - 2302
(609) 538-0444
Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 8
Technical Abstract (Limit 2000 characters, approximately 200 words)

Urban Air Mobility (UAM) aircraft development, enabled by Distributed Electric Propulsion (DEP), is transforming the aerospace industry by providing on-demand, affordable, quiet, and fast passenger-carrying operations in metropolitan areas. Designing and producing safe reliable UAM aircraft is particularly challenging given the relative infancy of electric propulsion for aeronautical applications, and that the complex aeromechanics associated with multiple proprotors and lifting/nonlifting surfaces interacting with each other and the airframe impacts fatigue, performance, control and flying qualities. As UAM aircraft concepts start to mature to the point that sub-scale demonstrators and proof-of-concept aircraft are being developed, there is a need for improved analysis tools, to support more detailed design, control law and control system development and testing. Unfortunately, the current generation of CFD-based high fidelity tools is unsuitable for many daily design and analysis applications due to computational cost, expertise requirements and setup level of effort. Conversely, many current design tools rely upon look-up tables or empirical relationships to capture complex interactional aerodynamics, or viscous and compressible effects, and become increasingly inaccurate in regions where the strong wake/component interactions occur or wakes trailed and shed from aerodynamic component becomes highly distorted. To directly address this market need, the team of Continuum Dynamics, Inc. and Georgia Institute of Technology proposes to build upon ongoing nonoverlapping work for NASA and the Department of Defense to develop a suite of mid-fidelity aeromechanics tools that directly address modelling assumptions and limitations of current and emerging design tools without being as costly as contemporary high fidelity overset CFD-based approaches.

Potential NASA Applications (Limit 1500 characters, approximately 150 words)

The proposed effort supports several of NASA ARMD’s Strategic Thrusts ( #3 - Ultra-Efficient Commercial Vehicles and #4 - Transition to Low-Carbon Propulsion) and ongoing Advanced Air Vehicle Program (AAVP) projects (the Advanced Air Transport Technologies (AATT) project, the Transformative Aeronautics Concepts Program (TACP), and the Revolutionary Vertical Lift Technologies (RVLT) project. The proposed analysis tool will be able to assist in the design and evaluation of new configurations.

Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words)

The proposed effort will produce a CFD-level mid-fidelity aeromechanics analysis tool for DEP, STOL, VTOL and UAM aircraft, in addition to advanced rotorcraft. Commercialization opportunities are anticipated from licensing the new modeling tools and providing support and engineering services in support of Uber Elevate, DoD’s Future Vehicle Lift and other current and future development projects

Duration: 24

Form Generated on 06/27/2021 15:51:22