The SBIR Phase I project will addresses NASA's need to develop technologies for producing space systems that can operate without environmental protection housings in the extreme environments of NASA missions. Specifically, this project will develop advanced actuators using unique piezoelectric single crystal materials and such actuators will have low driving voltage, large stroke, high driving force, low profile and light weight, low thermal mass, broad operation temperature down to cryogenic temperature, and high reliability. The excellent performance is achieved by using a patented technology that combines (1) d33 mode piezoelectric operation that is at least 100% stronger than d31 mode, (2) piezoelectric single crystal with high piezoelectric response at cryogenic temperature, (3) multilayer design to reduce driving voltage, (4) force amplified design to increase stroke and reliability, and (5) multi stack design to reduce the mechanical impedance. The Phase I project will be built on our previous projects on cryogenic valve and actuator technologies.
NASA is interested in expanding its ability to explore the deep atmospheres and surfaces of the Moon, planets, asteroids, and comets through the use of long-lived (days or weeks) balloons and landers. Survivability in extreme high temperatures and high pressures is also required for deep atmospheric probes to the giant planets. Long life, long stroke, low power, and high torque/force actuators with sub-arc-second/nanometer precision are critical components to achieve these goals.
While these piezoelectric actuators are mainly for NASA applications as they are designed with expensive piezoelectric materials, they can also be used in commercial applications by using the same design but with lower cost piezoelectric materials.