As the power levels and sizes of small satellites grow, new applications open up, along with new challenges for thermal control. Greater amounts of heat must be transported across longer distances, making it more difficult to control component temperatures using simple, passive systems. We propose to develop an innovative thermal storage technology for small satellite thermal control systems. Our technology offers high-energy storage density, excellent thermal conductance, and simple system integration. Thermal storage will enable high-power small satellites to continue using passive thermal control systems instead of active thermal control systems while operating high-power components in variable thermal environments. In Phase I, we will prove the feasibility of our approach through proof-of-concept experiments and prototype design.
The proposed technology is compact, inexpensive, simple, and offers performance well beyond the state of the art. Using high-capacity thermal storage will allow small satellites to operate at higher powers in more challenging thermal environments without the need for complex active thermal control systems. This will enable higher performance and improved reliability for small satellite imaging systems, pulsed data transmission, and laser communications.
Small satellites launched by DoD and commercial organizations can also use the proposed thermal storage technology for enhanced thermal control.