NASA SBIR 2019-I Solicitation

Proposal Summary


PROPOSAL NUMBER:
 19-1- S3.05-2607
SUBTOPIC TITLE:
 Terrestrial Balloons and Planetary Aerial Vehicles
PROPOSAL TITLE:
 Titan Aerial Research Vehicle for Scientific Exploration
SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
ASTER Labs, Inc.
155 East Owasso Lane
Shoreview, MN 55126- 3034
(651) 484-2084

Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)

Name:
Suneel Sheikh
E-mail:
sheikh@asterlabs.com
Address:
155 East Owasso Lane Shoreview, MN 55126 - 3034
Phone:
(651) 484-2084

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)

Name:
Suneel Sheikh
E-mail:
sheikh@asterlabs.com
Address:
155 East Owasso Lane Shoreview, MN 55126 - 3034
Phone:
(651) 484-2084
Estimated Technology Readiness Level (TRL) :
Begin: 2
End: 3
Technical Abstract (Limit 2000 characters, approximately 200 words)

The proposed mono-wing planetary aerial vehicle are small unmanned aircraft with biological inspiration derived from a samara (winged seed). The Titan Aerial Research Vehicle (TARV) mimics the natural aerodynamics of the samara planform and its auto-rotating shape. The TARV will be an exploratory vehicle capable of controlled flight, hover, and repeated takeoff and landing maneuvers on Titan for scientific exploration, with a design based on the current Roboseed, an Earth-based mono-wing aerial vehicle designed and operated by our technical collaborator, Aeroseed LLC.

Titan presents a unique exploration challenge due to its peculiar environment. With an atmosphere denser than Earth’s, abundance of liquids, and intriguing surface features, Titan warrants scientific exploration. Titan’s clouds are condensed methane, which can rain down upon the supercooled surface; and the sky is cloaked in a thick smog-like haze. The atmosphere can exhibit turbulent behavior, and surface temperatures can dip below 100 K. The TARV will be designed to operate in this harsh environment, using Titan environmental models to guide system materials trades, component design, and thermal management.

The TARV will be capable of controlled powered or unpowered flight within Titan’s atmosphere, and will support customizable scientific payloads for significant surface and atmospheric exploration. The rugged design of this planetary aircraft coupled with its ability to maintain precise active and passive flight, hover, land, and takeoff in dynamic, tumultuous conditions presents a versatile solution for in-situ measurement and exploration in dynamic environments like Titan.

In Phase I, ASTER Labs will use Titan’s unique environmental conditions to guide system design, categorize vehicle enhancements to make TARV operational on Titan, determine suitable payloads and integration strategies, and model vehicle flight behaviors via aerodynamic performance modeling and equations of motion characterization.

Potential NASA Applications (Limit 1500 characters, approximately 150 words)

The simple, ruggedized design coupled with minimal moving parts and built-in orientation control makes TARV ideal for planetary exploration. The mono-wing allows increased airflow compared to traditional aircraft, making it the ideal vehicle for in-situ atmospheric data collection, meteorological investigations, and widespread monitoring of gas concentrations or contaminants. TARV is capable of repeated solid and liquid surface takeoff and landing maneuvers, making the ruggedized vehicle optimal for scientific exploration of planetary bodies.

Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words)

The TARV’s mono-wing, ruggedized design is unique, as it allows flight in turbulent, unstable conditions. TARV, with adaptable payload capabilities, is a versatile platform for surveillance, data gathering, and mapping. TARV could form a communications-linked network of exploratory vehicles to explore caves, disaster sites, and achieve active weather monitoring. 

Duration: 6

Form Generated on 06/16/2019 23:26:19