Current state-of-the-art navigation systems incorporate optical gyroscopes and optical accelerometers as inertial sensors. These devices contain no moving parts and can sense rotations and accelerations with high bandwidth. However, there is a fundamental tradeoff between the size of an optical gyroscope and its sensitivity. Highly sensitive gyroscopes are needed to meet navigation goals, but Size, Weight and Power (SWaP) are extremely precious resources in spacecraft or UAVs. Using fast-light effects generated in fiber with Stimulated Brillouin Scattering, we will enhance rotation sensitivity of conventional Ring Laser Gyroscope (RLG), to develop gyros that can deliver higher performance with lower SWaP than existing navigation system. Previous results have shown sufficient fast-light effects with COTS components to demonstrate the technology, RLG operation under various conditions, and quantitative measurements of stability in a working prototype. In the proposed Phase I work, we will investigate specific modifications to miniaturize the form factor, stabilize against environmental disturbances, and integrate the measurement and control functions. This will enable a practical, standalone navigational device which demonstrates improved performance using fast-light effects to be developed during Phase II work.
A robust, high performance, and cost effective gyroscope suitablewill have significant impact on demanding NASA applications that require navigation or stabilization of small platforms, such as:
Tracking and control of launch vehicles for placing payloads into orbital or sub-orbital trajectories.
Precision inertial feedback during orbital maneuvers or stationkeeping operations on manned or unmanned spacecraft.
Actively stabilize instrument platforms during sensitive astronomical observations or scientific measurements.
Self-guided ordinance and unmanned aerial vehicles, where existing high performance systems are too large to use.
Stabilizing weapons platforms or communications devices mounted on ground and naval vehicles of all sizes.
Accurate navigation and gyrocompasses in a small form factor in the oil and gas industry for well-drilling.