Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system specifically for NASA’s future Lunar Lander and sample return missions. The proposed Lander solar array has game-changing performance metrics in terms of extremely high specific power, ultra-compact stowage volume, affordability, low risk, high environmental survivability/operability, high power and growth capability, high deployed strength and high strength during deployment (for mission environments that have high gravity and wind loading from atmospheres as examples), high deployed stiffness, high reliability, retraction and re-deployment capability, and broad modularity / adaptability to many missions. Most importantly, the proposed innovation has a demonstrated in-space capability to provide multiple and reliable deployments, retractions, and re-deployment operations allowing for continuous mobility operations and shuttling. No other solar array has demonstrated the ability to deploy, retract and re-deploy multiple times in space or through ground testing. The proposed technology innovation significantly enhances Lander and sample return vehicle capabilities by providing a low cost alternative renewable power generating system in place of the standard RTG systems currently being used. The proposed innovation greatly increases performance and autonomy/mobility, decreases risk, and ultimately enables missions.
Applications comprise practically all Exploration, Space Science, Earth Science, Planetary Surface, and other missions that require affordable high-efficiency PV power through of an ultra-lightweight, compact stowage, high strength / stiffness, and highly-modular solar array. The technology is particularly suited for Lander missions that require game-changing performance in terms of affordability, high performance, unsupported deployment in a gravity field, and deployment / retraction / re-deployment capability.
Non-NASA applications comprise missions that require affordable high-efficiency PV power through of an ultra-lightweight, compact stowage, high strength / stiffness, and highly-modular solar array. The technology is particularly suited for missions requiring game-changing performance in terms of low cost, high performance, and deployment / retraction / re-deployment capability for resiliency.