Large solar arrays required for next generation space exploration require new technology. The performance goals required for these missions are not attainable using OTS technology. The Compact Telescoping Array (CTA) is under development to meet these needs. One important component within the CTA architecture (and any H-configuration solar array) is the Telescoping Truss Mast (TTM). Opterus, working in close collaboration with the system prime, will develop the design and fabrication characteristics of the TTM to meet required needs of the next generation arrays. Reliability will be improved through the development of advanced tooling and process controls. Improved structural performance may also accommodate further mass optimization and structural margin. Other functional characteristics for the TTM will be developed supporting higher level functionality for truss deployment and retractability.
CTA technology directly supports the lightweight needs of future very high-power SEP mission requirements both near and far term. In the near future, the CTA system should be validated as the premier power system for high powered, mass-efficient spacecraft which will certainly boost the commercialization potential. The Monolithic Truss Segment (MTS) also supports NASA’s vision for robotic assembly in the form of the Tension Actuated in Space Manipulator or TALISMAN.
The CTA wing has been shown to scale well to megawatt power levels and beyond. Increasing power requirements and strong market demand are both positive indicators for the future of the technology. This technology supporting H-configuration blanket technology is well-situated to compete in this demanding market at the expected performance levels compared to those of other space power products.