Completing the Federal Aviation Administration’s (FAA’s) transition to Trajectory Based Operations (TBO) requires frequent, fast negotiations to adjust flight trajectories to account for the many uncertainties in National Airspace System (NAS) operations. These negotiations will be required not only pre-departure, but also while aircraft are en route. Furthermore, increasing numbers of flight deck applications and air/ground connectivity will make it easier than ever for airspace users to request trajectory amendments, but the FAA is not currently designed to handle that scale of exchanges. Mosaic ATM proposes a new approach to trajectory negotiation that leverages new data exchange architectures and increasingly autonomous capabilities. Our proposed approach supports trajectory negotiation that incorporates airspace user and FAA constraints and preferences, yet takes place outside the FAA’s ecosystem of legacy automated capabilities that are difficult to upgrade, allowing rapid deployment and scaling to achieve automated trajectory negotiation for an increasing number and variety of airspace users.
In Phase I, we will document requirements for the automated Trajectory Negotiation Service, develop and evaluate the algorithms for automated negotiation, and develop an architecture for a cloud-based automated Trajectory Negotiation Service. This supports Phase II development of a prototype capability that can be integrated into NASA’s ATM-X Test Bed for technical and stakeholder evaluation. Our approach is agnostic to vehicle type as well as ultimate deployment environment, supporting deployment as a stand-alone cloud service, a service within the FAA’s System Wide Information Management (SWIM) infrastructure, or as a capability within the Traffic Flow Management System (TFMS) or within commercial flight planning and filing capabilities.
Phase II integration into the ATM-X Test Bed supports future NASA concept development and evaluation: