NASA requires future Electrified Aircraft Propulsion (EAP) with lightweight, high-efficiency power distribution systems that have flight critical reliability have led to requirements for weight reduction by a factor of 2-3 as well as improved efficiency. Higher efficiency reduces losses and makes thermal management more achievable in an aircraft. Turboelectric, hybrid electric, and all electric power generation as well as distributed propulsive power have been identified as candidate transformative aircraft configurations with reduced fuel consumption/energy use and emissions. In these power applications, soft magnetics play an important role in the power system. Current and future power and electronic systems including motor drives, inverters and converters, and pulse-forming networks (among others) are currently limited by size, cost, and power (largely due to size and magnetic/inductor components losses). In this program, Powdermet will develop advanced soft magnetic material with high magnetic saturation and lower losses for 100kHz-300kHz power application in aerospace exploration. The proposed Phase I SBIR program will demonstrate Powdermet Inc’s ability to produce an advanced nanocomposite soft magnetic with high permeability magnetic with high energy efficiency at high frequency. This novel soft magnetic will feature as high magnetic saturation (>1.8 T), high operating temperature (>200 °C) and high permeability (>1000). More important, the proposed soft magnetic will high energy efficiency and low loss during the 100kHz-300kHz (especially, the low eddy current loss at these frequency)
This advanced nanocomposite soft magnetics can be widely used inElectrified Aircraft Propulsion, as well as advance aeronautic equipment. Turboelectric, hybrid electric, and all electric power generation as well as distributed propulsive power can benefit from the proposed advanced soft magnetic to reduce the weight as well as improve propulsion and launch efficiency.
The proposed soft magnetics can be widely used in DC-DC converters, wide band gap semiconductors, electric grid and other industry applications. The proposed nanolaminate materials could replace laminated cores in transformer and inductor circuits, making these devices much smaller and lower cost. In addition, these soft magnetics can be used in the electric vehicle to save weigh and space