NASA STTR 2018-I Solicitation

Proposal Summary

 18-1- T12.02-4053
 Extensible Modeling of Metallurgical Additive Manufacturing Processes
 Sentient Science - A Multiscale Modeling Suite for Process and Microstructure Prediction in Metal Additive Manufacturing
Name:   Sentient Science
Name:   University of Nebraska - Lincoln
Street:  672 Delaware
Street:  2200 Vine Street
City:   Buffalo
City:   Lincoln
State/Zip:  NY  14209-0000
State/Zip:   NE 68583 - 0861
Phone:  (716) 239-8215
Phone:   (402) 472-1930

Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Mr. Jingfu Liu
672 Delaware Buffalo, NY 14209 - 0000
(832) 260-5660

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Mrs. Melissa McReynolds
672 Delaware Buffalo, NY 14209 - 0000
(716) 239-8215
Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 7
Technical Abstract

In response to NASA’s topic T12.02 of “Extensible Modeling of Metallurgical Additive Manufacturing Processes”, Sentient proposes to incorporate its DigitalClone technique to develop a multiscale and multiphysics computational modeling suite to predict comprehensive outcomes from AM building processes, including geometrical accuracy, and resulting microstructure and defects. Figure 1 shows the proposed framework for the multiscale modeling suite. The process model will first predict the microscale thermal evolution in respect of various parameters. The temperature results will feed a subsequent macroscale model for prediction of stress and distortion at part scale. Moreover, the predicted thermal history and distribution will feed subsequent microstructure model to further predict the micro-scale features including grain morphology and porosity. The proposed computational modeling framework allows a comprehensive prediction and understanding of the metal AM process at multiple levels.

In Phase I, Sentient will upgrade and demonstrate DigitalClone’s capability to integrate process-microstructure simulation for metal AM process. Specifically, selective laser melting of IN 718 alloy will be used for development and demonstration purposes in Phase I. AM coupons with different geometries will be fabricated by Selective Laser Melting (SLM) at different parameters. DigitalClone will be used to simulate all different scenarios of coupons made from IN718 alloys, and predict temperature, stress, part distortion, and grain structure. Materials characterization will be performed on the coupons to examine geometrical accuracy, microstructure, residual stress, all of which will be used to validate the DigitalClone model. In Phase II, different materials and AM platforms and more complex geometrical components will be tested for model validation. Additionally, close-loop optimization framework will be explored for improving geometrical design and microstructure features.

Potential NASA Applications

A successful completion of this project will lead to a robust AM modeling suite that provides accurate prediction of dimensional accuracy, microstructure, and defects in AM process. The proposed modeling suite will significantly reduce the uncertainty and conservatism in design of new AM components and processes. NASA would directly benefit from this software via virtually pre-testing the new AM component design, process effects and part quality.

Potential Non-NASA Applications

The proposed modeling software will benefit several other industries incorporating AM technique, including aerospace, medical device, automotive industries. This will not only allow customers virtually evaluating the AM part qualities, more importantly, it will provide the “best solution” for customer in respect of optimizing AM design, selecting process and materials, increasing performance, reliability and durability, and reducing cost of operation the process.

Form Generated on 05/25/2018 11:56:33