This proposed SBIR will build on Fibertek's NASA-funded Compact Laser Communications Terminal (CLCT) heritage to develop new ultra-low SWaP-c technology that can transform this unit into a Distributed Spacecraft Missions (DSM) capable laser communications terminal supporting small satellite intersatellite links (ISL) as well as deep space downlinks to Earth using relay satellites. This approach leverages previous NASA and commercial investments in the CLCT and can enable mission adoption within the next 5 years.
This SBIR proposes to update the CLCT design for baseline DSM operational use to enable mesh networks by independently pointing three or more optical terminals on a single satellite and to develop a low SWaP serially concatenated pulse-position modulated (SCPPM
Fibertek is aligned with the NASA SCaN vision and has been working to develop end-to-end space optical communications link capabilities, such as High-Speed Optical Ground Station technology and SmallSat and CubeSat space optical terminal capabilities. Optical transceiver technology applies to ground and space nodes for sending and receiving information. This Phase II SBIR effort will enhance our offerings at both nodes of SCaN space optical communications links, and for NASA, SmallSat Science missions:
All DoD services are interested in space optical communications because of data security, increased bandwidth, and robustness against jamming and interception. This Phase II modem development activity aligns with products for this market as well. Fibertek is currently pursuing, with partners, the opportunity to provide exactly this type of modem capability on an AFRL Program for 2019.