With future missions of increasing complexity, duration, distance, and uncertainty, there has been a growing need for methods and tools that can permit the effective formation of early stage conceptual designs that are not only cost-effective, but also productive and resilient to failures. Work performed during Phase I, involved development of a method and tools to address these challenges for space-based systems. However, further development is needed to expand these approaches, making them viable for a more general set of problems. Furthermore, improvements both to the quality of solutions obtained, and the efficiency with which these solutions are obtained is necessary. Finally, development of flight software to improve performance of complex space systems will demonstrate real-world benefits of this Phase II effort.
This proposal addresses these issues with the following innovations:
The significance of the innovations is that the proposed methods and tools will:
NASA applications that can benefit from the increased resilience provided by the methods and tools developed include next-generation habitat systems, such as those being developed under NASA’s NextSTEP-2 BAA, and the Lunar Orbital Platform-Gateway (including the Power Propulsion Element). Also, assets required for NASA’s recently announced return to the Moon, which are complex systems within a system-of-systems, can benefit from the tools, for both robotic and human exploration of the surface.
The advent of the in-space satellite assembly and manufacturing technology, coupled with the emerging ability to service satellites, means that commercial satellite architectures are undergoing a transformation. The commercial satellite industry requires these tools to optimize the performance and resilience of next-generation commercial satellite systems to minimize overall lifecycle cost.