NASA SBIR 2018-II Solicitation

Proposal Summary

 18-2- H3.02-8532
 Waste Management and Resource Recovery
 Advanced Organic Waste Gasifier
SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Pioneer Astronautics
11111 West 8th Avenue, Unit A
Lakewood, CO 80215
(303) 980-0890

PRINCIPAL INVESTIGATOR (Name, E-mail, Mail Address, City/State/Zip, Phone)
Stacy Carrera
11111 West 8th Avenue, Unit A
Lakewood, CO 80215 - 5516
(303) 339-7931

BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Robert Zubrin
11111 West 8th Avenue, Unit A
Lakewood, CO 80215 - 5516
(303) 980-0890

Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 6
Technical Abstract (Limit 2000 characters, approximately 200 words)

The Advanced Organic Waste Gasifier (AOWG) is a technology designed to convert organic wastes generated during human spaceflight into clean water for mission consumables and gases suitable for venting to minimize vehicle mass for Mars transit and return missions. The AOWG integrates steam reformation, methanation, and electrolysis to convert organic waste into water, dry vent gas, and a small amount of inorganic residue, thereby reducing transit propellant and tankage mass. The AOWG reduces risks associated with storing, handling, and disposing food waste and packaging, waste paper, wipes and towels, gloves, fecal matter, urine brine, and maximum absorbency garments in microgravity environments. The reformer provides nearly complete conversion of feeds to valuable water and jettisoned gas with minimal losses and consumables requirements while operating at pressures just above the ambient environment. The baseline AOWG Phase II design incorporates significant novel enhancements to previous state-of-the-art Trash to Gas (TtG) steam reforming technology including a feed shredder, feed dryer, continuous feeder, tar destruction reactor, and water purification. The largely automated AOWG limits crew operation requirements primarily to loading packaged wastes into the feed hopper and occasional discharge and compaction of ash residue.

The proposed Phase II AOWG will be developed with a focus on achieving complete organic waste gasification simultaneous with maximum water production using feeding, materials handling, and ancillary systems geared to microgravity operations. These concepts will be integrated into a protoflight Phase II design, which will consider and accommodate the microgravity environment necessary to operate the AOWG through startup, steady operation, and shutdown. This progression of development will lead to implementation in advanced human space missions.

Potential NASA Applications (Limit 1500 characters, approximately 150 words)

AOWG system is key for human space exploration, converting organic crew wastes into clean water, a small mass of sterile inorganic residue, and clean gases suitable for venting from the spacecraft. The AOWG is targeted toward minimizing overall transit vehicle mass, which minimizes mass requirement for propellants and tankage. Waste mass reduction with water recovery is critical for life support and to reduce overall flight costs.

Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words)

AOWG has applicability for terrestrial energy recovery, fuel and chemical synthesis from renewable resources, agricultural wastes, municipal wastes, and organic-containing wastes including paper and plastic. These organic-containing resources processed by AOWG methods produce syngas to convert into methanol or other fuels and chemicals using Fischer-Tropsch or other catalytic synthesis processes.

Duration: 24

Form Generated on 05/13/2019 13:31:55