NASA SBIR 2018-II Solicitation

Proposal Summary

 18-2- H3.01-5602
 Process Technologies for Water Recycling in Space
 Controlled-Release Silver Biocide Device
SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Environmental and Life Support Tech.
6600 East Lookout Drive
Parker, CO 80138
(720) 726-9525

PRINCIPAL INVESTIGATOR (Name, E-mail, Mail Address, City/State/Zip, Phone)
Clifford Jolly
6600 East Lookout Drive
Parker, CO 80138 - 8707
(303) 495-2090

BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Clifford Jolly
6600 East Lookout Drive
Parker, CO 80138 - 8707
(303) 495-2090

Estimated Technology Readiness Level (TRL) :
Begin: 3
End: 5
Technical Abstract (Limit 2000 characters, approximately 200 words)

Silver and its compounds are of significant appeal as biocides for long-duration space missions, as they are capable of destroying or inhibiting the growth of a wide spectrum of microorganisms including bacteria, viruses, algae, molds and yeast, while exhibiting low toxicity to humans. The general pharmacological properties of silver are based upon the affinity of silver ion for biologically important moieties such as sulfhydryl, amino, imidazole, carboxyl and phosphate groups, and these multiple mechanisms are primarily responsible for its antimicrobial activity. Silver can impact a cell through multiple biochemical pathways, making it difficult for a cell to develop resistance to it, and it can be precisely and efficiently delivered using controlled-release technology.

An engineering approach is detailed that optimizes the epidemiological features of silver compounds in conjunction with the chemical and mechanical design features desirable for long-duration space missions. Phase I builds upon three distinct engineering approaches to produce flow-through silver biocide delivery devices based on controlled-release designs that have multiple decades of success in process industrial applications. Phase II will consist of design optimization and extensive parametric testing to support on-site NASA tests and long-duration flight requirements. Phase II will also investigate a regenerate approach to maintaining device activity over multi-year operational lifetimes, and advanced QA/QC protocols that will ensure effectiveness in very long term and remote applications on Mars and Lunar bases. The long-term results and benefits to the manned space program are high antimicrobial effectiveness, low toxicity, simple operation and integration into advanced life support systems, maximum operational life, and superior mass/volume efficiency compared to any other possible approach.

Potential NASA Applications (Limit 1500 characters, approximately 150 words)
This technology is expected to be baselined for all future advanced space missions including Lunar and Mars bases, and vehicles required for transport.
Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words)
  • Extensive commercial potential in the $3.2B global water treatment market for biocides
  • Includes applications in aquaculture, ultrapure water, industrial process water, emergency and outdoor markets
Duration: 24

Form Generated on 05/13/2019 13:31:54