NASA STTR 2016 Solicitation

FORM B - PROPOSAL SUMMARY


PROPOSAL NUMBER: 16-1 T6.04-9723
RESEARCH SUBTOPIC TITLE: Closed-Loop Living System for Deep-Space ECLSS with Immediate Applications for a Sustainable Planet
PROPOSAL TITLE: A Novel, Membrane-Based Bioreactor Design to Enable a Closed-Loop System on Earth and Beyond

SMALL BUSINESS CONCERN (SBC): RESEARCH INSTITUTION (RI):
NAME: Mango Materials NAME: Colorado School of Mines
STREET: 490 Lake Park Avenue STREET: 1012 14th Street
CITY: Oakland CITY: Golden
STATE/ZIP: CA  94610 - 8099 STATE/ZIP: CO  80401 - 1838
PHONE: (650) 427-0430 PHONE: (303) 273-3421

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Molly Morse
molly@mangomaterials.com
490 Lake Park Ave.
Oakland, CA 94610 - 8099
(650) 427-0430

CORPORATE/BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Molly Morse
molly@mangomaterials.com
490 Lake Park Ave.
Oakland, CA 94610 - 8099
(650) 427-0430

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 3
End: 4

Technology Available (TAV) Subtopics
Closed-Loop Living System for Deep-Space ECLSS with Immediate Applications for a Sustainable Planet is a Technology Available (TAV) subtopic that includes NASA Intellectual Property (IP). Do you plan to use the NASA IP under the award?
No

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
The proposed innovation is a membrane bioreactor system to produce a biopolymer from methane gas. This new methane fermentation process will expand and advance current gas delivery techniques to create affordable fermentation methods on Earth and beyond.
Mango Materials is currently working to scale up and commercialize the production of polyhydroxyalkanoate (PHA) from methane, but its scaled-up fermentation systems are typically tall and narrow to take advantage of hydrostatic pressure for the transfer of methane into solution. The proposed work represents a unique approach that could enable the production of biopolymer on Earth and also non-Earth environments, thus creating a closed-loop system for producing biopolymer products on-demand in outer space. The proposed design is a novel, membrane-based bioreactor that will enable bacterial growth and biopolymer production to occur in microgravity environments on moist membranes that are sandwiched between layers of the gaseous feedstocks methane and oxygen. This system will allow for efficient energy use, minimal square footage, and effective mass transfer from the gaseous to the liquid phase without being dependent on hydrostatic pressure. Mango Materials will partner with Colorado School of Mines where there is extensive experience with membrane bioreactors, to design and construct this system.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Use of membrane bioreactor (MBR) systems to enable production of various methane fermented products such as polyhydroxyalkanoates (PHAs) for use in many plastic-like applications, nutritional supplements, essential amino acids, bioremediation, and products for advanced life support. For example, sustainable polyhydroxyalkanotes (PHAs) can be produced and formed into filaments that could be used for 3-D printing applications on the International Space Station (ISS). Also, this MBR system and ultimate PHA production will contribute to the resource recovery and waste processing goals of advanced life support at NASA.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Polyhydroxyalkanoates (PHAs) are a substitute for conventional plastic goods including microbeads, packaging, childrens´┐Ż toys, electronic casings, coatings, and agricultural films. These materials can be fully biodigestable and will be converted back into carbon using microbial processes. This carbon can enter the natural carbon cycle and prevent additional carbon to affect the atmospheres of Earth or other planetary bodies. PHAs are also fully edible and can be digested by humans safely.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Biomass Growth
Biophysical Utilization
Coatings/Surface Treatments
Essential Life Resources (Oxygen, Water, Nutrients)
Food (Preservation, Packaging, Preparation)
In Situ Manufacturing
Organics/Biomaterials/Hybrids
Polymers
Processing Methods
Smart/Multifunctional Materials

Form Generated on 04-26-16 15:16