NASA SBIR 2016 Solicitation

FORM B - PROPOSAL SUMMARY


PROPOSAL NUMBER: 16-2 H2.02-7555
PHASE 1 CONTRACT NUMBER: NNX16CC84P
SUBTOPIC TITLE: Nuclear Thermal Propulsion (NTP)
PROPOSAL TITLE: Joining of Tungsten Cermet Nuclear Fuel

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Plasma Processes, LLC
4914 Moores Mill Road
Huntsville, AL 35811 - 1558
(256) 851-7653

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
John Scott O'Dell
scottodell@plasmapros.com
4914 Moores Mill Road
Huntsville, AL 35811 - 1558
(256) 851-7653 Extension :104

CORPORATE/BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Timothy N McKechnie
timmck@plasmapros.com
4914 Moores Mill Road
Huntsville, AL 35811 - 1558
(256) 851-7653 Extension :103

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 2
End: 4

Technology Available (TAV) Subtopics
Nuclear Thermal Propulsion (NTP) is a Technology Available (TAV) subtopic that includes NASA Intellectual Property (IP). Do you plan to use the NASA IP under the award?
No

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
Nuclear Thermal Propulsion (NTP) has been identified as a critical technology needed for human missions to Mars and beyond due to its increased specific impulse (Isp) as compared to traditional chemical propulsion systems. Recently, the Game Changing Development (GCD) Program, which is a partnership between NASA, DOE, and industry, was initiated to evaluate the feasibility of a low enriched uranium (LEU) NTP system. A critical aspect of NTP is to develop a robust, stable fuel. One of the fuel configurations currently being evaluated is a W-UO2 cermet. Fabrication of full-size cermet elements (>20?) has proven to be difficult. As a result, the use of cermet segments to produce a full-size fuel element is of interest. However, techniques for joining the segments are needed. During Phase I, diffusion bonding techniques were developed for producing fuel elements from cermet segments. Microscopic examination and preliminary properties testing showed excellent joints were formed. For example, quantitative tensile testing of W samples produced at 1500C HIP with a Nb interfacial coating showed the failures were in the bulk W and not at the Nb-W interfaces. Therefore, the strength of the joints were greater than the strength of the bulk W material. Using the most promising fabrication methods, a 6.3' long simulated cermet fuel element comprised of twenty-five 0.25' thick segments was produced to demonstrate proof-of-concept. During the Phase II investigation, the HIP diffusion bonding process will be optimized for making W cermet based fuel elements. This will be accomplished by performing a process parameter-characterization-properties study. The optimized fabrication methods will then be used to make prototype fuel elements with W claddings and subscale fuel elements for delivery to NASA for hot hydrogen testing.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
NASA applications that would benefit from this technology include Nuclear Thermal Propulsion (NTP) and Nuclear Electric Propulsion (NEP). For example, the proposed Phase II effort directly supports the goals of NASA's GCD Program. Initial NTP systems will have specific impulses roughly twice that of the best chemical systems, i.e., reduced propellant requirements and/or reduced trip time. During Phase II-X and III, full-size full elements will be fabricated for testing in NTREES. Potential NASA missions include rapid robotic exploration missions throughout the solar system and piloted missions to Mars and beyond, where power from solar panels becomes more difficult to obtain.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Both government and commercial entities in the following sectors would benefit from the development refractory metal coatings and diffusion bonding: defense, material R&D, nuclear power, aerospace, propulsion, automotive, electronics, crystal growth, and medical. Targeted commercial applications include high temperature-corrosion resistant claddings for nuclear fuel rods, hot gas path rocket motors, net-shape fabrication of refractory rocket nozzles, crucibles, heat pipes, and propulsion subcomponents; and advanced coating systems for x-ray targets, sputtering targets, turbines, and rocket engines.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Ceramics
Coatings/Surface Treatments
Composites
Fuels/Propellants
Joining (Adhesion, Welding)
Metallics
Processing Methods
Prototyping
Spacecraft Main Engine

Form Generated on 03-07-17 15:43