NASA SBIR 2016 Solicitation


PROPOSAL NUMBER: 16-1 S4.03-7862
SUBTOPIC TITLE: Spacecraft Technology for Sample Return Missions
PROPOSAL TITLE: Ignition Systems for Long-Term Storage and Multi-Start Capability

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Space Propulsion Group, Inc.
1007 South Claremont Street
San Mateo, CA 94402 - 1835
(408) 541-1481

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Brian Evans
1007 S. Claremont Street
San Mateo, CA 94402 - 1835
(408) 541-1481

CORPORATE/BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Arif Karabeyoglu
1007 S. Claremont Street
San Mateo, CA 94402 - 1835
(650) 799-1409

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 2
End: 4

Technology Available (TAV) Subtopics
Spacecraft Technology for Sample Return Missions is a Technology Available (TAV) subtopic that includes NASA Intellectual Property (IP). Do you plan to use the NASA IP under the award?

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
A Mars Sample Return (MSR) campaign has been identified as the critical next step in Mars science. Of the tasks needing to be accomplished, the Mars Ascent Vehicle (MAV), or means for getting the samples into orbit around Mars, is considered the highest risk. The MAV will be required to remain on the Martian surface for a year or more in order to return to Earth on a minimum energy trajectory and coordinate with the other aspects of the MSR. Environmental conditions on Mars are a significant concern, with seasonal extremes of about �110�C and 25�C. To reduce the required system mass and power related to thermal management, fuel, oxidizer, and ignition system components should be able to withstand these temperature variations. The trajectory of the MAV also has the requirement for restart capabilities.

The focus of this proposal is the development of hypergolic ignition systems for MAV application. The current oxidizer of choice for the MAV is a mixed oxides of nitrogen (MON), which is a known hypergol with many fuels. The proposed solution uses metal particles (e.g., hydrides, boranes, or borohydrides) to generate ignition by injection and mixing with the oxidizer. The particles are initially housed in a sealed, pressurized chamber prior to injection. An inert gas acts as the pressurant for the particles and also serves to protect the particles from oxidation and hydrolysis during storage. Elimination of polymeric materials from the ignition train eliminates concerns of glass transition, which could lead to ignition failure in traditional pyrotechnic/pyrogen igniters. The focus of the study is the design, analysis, and testing of potential particle injection configurations and the selection of the ideal candidate particle type and morphology. At the completion of Phase I, as system ready for subscale testing in a hybrid rocket motor will be ready for implementation.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
The proposed technology finds applications directly related to the MAV for MSR mission. Further applications include the use in any system that would benefit from hybrid rocket propulsion systems that requires multiple start capability. A feature of this technology is the scalable nature of the system. The scalability can potentially allow application for a range of propulsion systems with sizes from cubesat thrusters to large scale-boosters. The capability of hybrid propulsion systems for low operating temperatures makes them attractive candidates for planetary exploration and in-space propulsion. The elimination of mass and power requirements for thermal management increases the potential payload mass. As such, the use of this ignition technology is applicable to all such missions as it is based on the same premise of low-temperature storage and operation.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
The capability for low-temperature storage and operation, ability to provide multiple ignition pulses, and simple design makes this development attractive for such systems as:
- Attitude control systems for satellite propulsion;
- Commercial or military propulsion systems that would undergo large temperature changes in storage;
- Commercial or military space systems that require launch from cold climates;
- Military propulsion systems that have wide temperature requirements for storage;

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Launch Engine/Booster
Maneuvering/Stationkeeping/Attitude Control Devices
Spacecraft Main Engine

Form Generated on 04-26-16 15:14