NASA STTR 2012 Solicitation

FORM B - PROPOSAL SUMMARY


PROPOSAL NUMBER: 12-2 T9.01-9754
PHASE 1 CONTRACT NUMBER: NNX13CD11P
RESEARCH SUBTOPIC TITLE: Technologies for Aerospace Experimental Capabilities
PROPOSAL TITLE: Modular Electric Propulsion Test Bed Aircraft

SMALL BUSINESS CONCERN (SBC): RESEARCH INSTITUTION (RI):
NAME: Rolling Hills Research Corporation NAME: The Board of Trustees of the University of Illinois
STREET: 420 North Nash Street STREET: 1901 South First Street, Suite A
CITY: El Segundo CITY: Champaign
STATE/ZIP: CA  90245 - 2822 STATE/ZIP: IL  61820 - 7473
PHONE: (310) 640-8781 PHONE: (217) 333-2187

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Michael F Kerho
Mike@RollingHillsResearch.com
420 North Nash Street
El Segundo, CA 90245 - 2822
(310) 640-8781 Extension :23

CORPORATE/BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Mr. Brian R Kramer
Brian.Kramer@RollingHillsResearch.com
420 North Nash Street
El Segundo, CA 90245 - 2822
(310) 640-8781 Extension :22

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 3
End: 5

Technology Available (TAV) Subtopics
Technologies for Aerospace Experimental Capabilities is a Technology Available (TAV) subtopic that includes NASA Intellectual Property (IP). Do you plan to use the NASA IP under the award?
No

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of hybrid electric powered aircraft. The new test bed and simulation system will provide a dedicated platform and set of analysis tools to study, design, and test hybrid electric powered propulsion components and systems for use in commercial, general aviation, military, and UAV systems. The test bed will allow various hybrid electric propulsion system technologies to be tested to determine performance, reliability, safety, and cost. These include various motors, motor controllers,gas turbines, batteries, fuel cells, super capacitors, propeller, and fan technologies. Additionally, the platform could be used to investigate performance characteristics unique to hybrid electric propulsion, determine the most accurate methods for measuring energy used and remaining, and research redundancy possibilities unique to hybrid electric aircraft. Studies performed during Phase I demonstrated that pure electric aircraft are limited in range and endurance by the specific energy of current battery technology. Although there is a great deal of effort being put into advanced batteries, the most practical solution in the near term is to utilize a hybrid electric system. The proposed Phase II program builds upon the Phase I results by developing a detailed propulsion system simulator model for hybrid electric propulsion systems, with the ultimate goal of a bench test model of the propulsion system. Using a detailed multi-platform/mission trade study, a coupled parallel, uncoupled series, and split series-parallel hybrid system architecture will be compared to determine the most advantageous and efficient. The propulsion system simulator will also be used to perform a sensitivity analysis of each architecture to determine critical performance aspects for individual components.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
The NASA commercialization potential for an efficient, viable hybrid electric aircraft propulsion system is quite promising. The NASA Subsonic Fixed Wing (SFW) project has identified ambitious goals for the next three generations of aircraft, N+1, N+2, and N+3. For the N+3 generation (2025 timeframe), these include a -52 dB noise reduction relative to stage 4 noise limit, an -80% reduction in NOx emissions, and a -60% reduction in total mission energy consumption. Various forms of electric and hybrid electric propulsion hold a great deal of potential to make significant contributions towards these goals. NASA is currently investigating various technologies, ranging from advanced aerodynamics, superconducting electronics and electromechanical devices to advanced structures, under a program called Large Electric Aircraft Propulsion Technology (LEAP Tech). The proposed hybrid electric test bed will be an important tool in developing appropriate hybrid aircraft technologies to address these problems. The aircraft hybrid electric architecture simulation system, trade study results, and test bed will significantly enhance NASA's ability to meet the SFW N+3 goals, advancing the state-of-the-art to make hybrid electric systems efficient, competitive, safe, reliable, and cost effective.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
The commercialization potential for an efficient, viable hybrid electric aircraft propulsion system is quite promising. The commercialization potential for a hybrid electric, multi-architecture propulsion system simulator is also quite good. The development of a tool for both detailed and preliminary design for hybrid electric propulsion systems will be highly sought after as hybrid electric propulsion systems become increasingly attractive and more prevalent. The development of a research test bed for studying all aspects of hybrid electric aircraft propulsion will act as a technical enabler. The propulsion system simulator will enable component optimization and a variety of operational studies to be performed, all of which will help define the important aspects and characteristics for a successful hybrid electric aircraft propulsion system. With the knowledge gained from this project, and the likely follow-on research, RHRC will be well positioned to team with aircraft manufacturers interested in producing hybrid electric aircraft propulsion systems. The propulsion system simulator coupled with a working testbed will be a key technology demonstration package with the capability to evaluate new components or concepts as they are developed. RHRC can also use the knowledge and experience gained during the program to develop hybrid electric propulsion systems for existing aircraft.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Aerodynamics
Atmospheric Propulsion
Data Modeling (see also Testing & Evaluation)
Distribution/Management
Generation
Hardware-in-the-Loop Testing
Models & Simulations (see also Testing & Evaluation)
Simulation & Modeling
Storage
Vehicles (see also Autonomous Systems)

Form Generated on 07-29-14 10:30