NASA STTR 2009 Solicitation


PROPOSAL NUMBER: 09-1 T6.01-9917
RESEARCH SUBTOPIC TITLE: Safe High Energy Density Batteries and Ultracapacitors
PROPOSAL TITLE: Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors

NAME: NANOSCALE MATERIALS, INC. NAME: Battelle Memorial Institute
STREET: 1310 Research Park Dr. STREET: 505 King Avenue
CITY: Manhattan CITY: Columbus
STATE/ZIP: KS  66502 - 5000 STATE/ZIP: OH  43201 - 2693
PHONE: (785) 537-0179 PHONE: (614) 424-6113

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Slawomir Winecki
1310 Research Park Dr.
Manhattan, KS 66502 - 5000
(785) 537-0179

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 3
End: 4

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
This Small Business Innovation Research Phase I effort focuses on development of novel metal-oxide-carbon nanocomposites for application in pseudocapacitive electrochemical supercapacitors. Specifically, nanocomposites based on manganese, titanium, tantalum and vanadium oxides will be incorporated, at the nanoscale level, with electrically conductive carbon supports. Our focus will be to combine the desired pseudocapacitive characteristics of metal oxides with high surface area and large electrical conductivity of carbon supports while achieving economical and scalable manufacturing. The proposed nanocomposite materials will be tested as electrode materials in aqueous and nonaqueous supercapacitors.
The proposed project will be a joint effort on NanoScale Corporation and Battelle Memorial Institute. NanoScale's role in the effort will be to synthesize nanocomposite materials, characterize their physical and chemical properties, and to optimize them based on results of electrochemical testing carried out by Battelle. Battelle's role in the effort will be to take the metal oxides prepared by NanoScale and fabricate them into supercapacitor elements to be tested in half-cell and full-cell devices.
NanoScale is uniquely qualified to carry out the proposed research due to its rich experience in development and scaled-up synthesis of nanosized materials, including materials for battery applications. NanoScale has worked previously on several projects related to battery technologies.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
The top level requirements of NASA space applications demand highly efficient and highly reliable energy storage systems. Long cycle lifetime (100,000 cycles) and long calendar lifetime (years or decades) requirements favor supercapacitors over batteries in space systems. Existing supercapacitors based on carbons or ruthenium oxide offer low capacities or are prohibitively expensive. The proposed project will develop new materials that have high potential to provide superior capacities and be economical. This development will enable a new generation of supercapacitors for various NASA missions.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Technologies that allow for storage of electrical energy are critically important for today's energy-intensive applications. Hybrid and electric cars, power conditioning or backup systems, and various portable electronic devices (cameras, camcorders, and power tools) all require high density storage of energy and high power delivery rates. Supercapacitors are expected to be widely used in these applications and provide the high power density and long lifetime capabilities that are out of reach for batteries. Unfortunately, existing carbon based supercapacitors are inefficient for these applications while the state of the art ruthenium oxide devices are prohibitively expensive. Nanocomposite materials that will be developed in this project will combine high capacities with low cost and will satisfy the demands of industrial and Customer applications. NanoScale and Battelle anticipate great commercial opportunities originating from the proposed project.

NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.

Energy Storage

Form Generated on 09-18-09 10:14