NASA SBIR 2007 Solicitation


PROPOSAL NUMBER: 07-1 X5.03-9447
SUBTOPIC TITLE: Lunar Volatile Resource Prospecting and Collection
PROPOSAL TITLE: Sealing Technologies for Repetitive Use in Abrasive, Electrostatic, High Vacuum Environments

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Starsys, Inc
1722 Boxelder Street
Louisville, CO 80027 - 3008
(303) 530-1925

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Scott Christiansen
1722 Boxelder Street
Louisville, CO 80027 - 3008
(303) 530-1925

Expected Technology Readiness Level (TRL) upon completion of contract: 2 to 3

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
Clearly, the presence of lunar dust has the propensity for major adverse impacts on dynamic mechanical systems required for future lunar operations such as Rovers, Robotic Systems, In-Situ Resource Utilization (ISRU) and science experiments. As such, the development of innovative techniques for mitigating dust affects is warranted. In abrasive environments such as the presence of regolith dust on the moon, mechanism seals must be either designed for robustness to avoid premature damage and leakage, or, the dust particles must be removed. For this SBIR, Starsys proposes an enabling all-metal, knife-edge seal capable of maintaining seal integrity even in the presence of the abrasive, lunar dust. The proposed Knife Edge Seal concept provides for an innovative mechanism by which to seal critical ISRU mechanisms even in the presence of lunar dust contamination. Starsys' knife edge seal approach will utilize a hard metal knife edge and seal gland filled with an Indium alloy. The knife edge geometry is sized to allow for low forces required to penetrate the Indium, while the gland geometry is sized to properly and reliably capture the Indium. The Indium is a phase change material available in a variety of alloys to target specific melting points.

The Knife Edge Seal offers two distinct advantages when attempting to mitigate the affects of lunar dust; 1) the knife edge will penetrate any dust layer developed on the seal gland surface and embed itself into the gland material, and 2) the Indium can be heated and re-flowed in between mate and de-mate cycles, allowing the dust particles to mix in with the soft Indium material and most likely eliminating sufficient barrier between the knife edge and Indium to allow for sufficient sealing to occur.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Potential NASA commercial applications include manned and unmanned lunar operations, operations on MARS, and other exploratory missions involving operations in abrasive environments.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Potential Non-NASA commercial applications include commercial space flight tourism, commercial space satellites and instrument/sensor cover systems, and terrestrial applications requiring operation of sealed mechanical systems in abrasive environments.

NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.

Airlocks/Environmental Interfaces
Fluid Storage and Handling
In-situ Resource Utilization
Portable Life Support

Form Generated on 09-18-07 17:50